IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v175y2018icp142-159.html
   My bibliography  Save this article

A Bayesian approach to risk modeling of autonomous subsea intervention operations

Author

Listed:
  • Hegde, Jeevith
  • Utne, Ingrid Bouwer
  • Schjølberg, Ingrid
  • Thorkildsen, Brede

Abstract

The introduction of autonomy in subsea operations may affect operational risk related to Inspection, Maintenance, and Repair (IMR). This article proposes a Bayesian Belief Network (BBN) to model the risk affecting autonomous subsea IMR operations. The proposed BBN risk model can be used to calculate the probability of aborting an autonomous subsea IMR operation. The nodes of the BBN are structured using three main categories, namely technical, organizational, and operational. The BBN is tested for five unique scenarios using a scenario generation methodology for the operational phase of the autonomous IMR operation. The BBN is quantified by conducting a workshop involving industry experts. The results from the proposed model may provide a useful aid to human supervisors in their decision-making processes. The model is verified for five scenarios, but it is capable of incorporating and calculating risk for other combinations of scenarios.

Suggested Citation

  • Hegde, Jeevith & Utne, Ingrid Bouwer & Schjølberg, Ingrid & Thorkildsen, Brede, 2018. "A Bayesian approach to risk modeling of autonomous subsea intervention operations," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 142-159.
  • Handle: RePEc:eee:reensy:v:175:y:2018:i:c:p:142-159
    DOI: 10.1016/j.ress.2018.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017304222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Røed, Willy & Mosleh, Ali & Vinnem, Jan Erik & Aven, Terje, 2009. "On the use of the hybrid causal logic method in offshore risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 445-455.
    2. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
    3. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    4. Brito, Mario & Griffiths, Gwyn, 2016. "A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 55-67.
    5. Yang, Yongsheng & Khan, Faisal & Thodi, Premkumar & Abbassi, Rouzbeh, 2017. "Corrosion induced failure analysis of subsea pipelines," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 214-222.
    6. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad, 2021. "A multinomial process tree for reliability assessment of machinery in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Yu, Qing & Liu, Kezhong & Yang, Zhisen & Wang, Hongbo & Yang, Zaili, 2021. "Geometrical risk evaluation of the collisions between ships and offshore installations using rule-based Bayesian reasoning," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Sutrisno Sutrisno & Sunarsih Sunarsih & Widowati Widowati, 2022. "A Piecewise Objective Probabilistic Optimization Approach as Decision Making for Supplier Selection and Inventory Management With Price Discount," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 15(1), pages 1-17, January.
    5. Utne, Ingrid Bouwer & Rokseth, Børge & Sørensen, Asgeir J. & Vinnem, Jan Erik, 2020. "Towards supervisory risk control of autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Colombo, Danilo & Lima, Gilson Brito Alves & Pereira, Danillo Roberto & Papa, João P., 2020. "Regression-based finite element machines for reliability modeling of downhole safety valves," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Zhang, Wenjun & Zhang, Yingjun & Zhang, Chuang, 2024. "Research on risk assessment of maritime autonomous surface ships based on catastrophe theory," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Xu, Sheng & Kim, Ekaterina & Haugen, Stein & Zhang, Mingyang, 2022. "A Bayesian network risk model for predicting ship besetting in ice during convoy operations along the Northern Sea Route," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    4. Fam, Mei Ling & He, Xuhong & Konovessis, Dimitrios & Ong, Lin Seng, 2020. "Using Dynamic Bayesian Belief Network for analysing well decommissioning failures and long-term monitoring of decommissioned wells," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Xu, Sheng & Kim, Ekaterina & Haugen, Stein & Zhang, Mingyang, 2022. "A Bayesian network risk model for predicting ship besetting in ice during convoy operations along the Northern Sea Route," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    8. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    9. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2023. "A traceable process to develop Bayesian networks from scarce data and expert judgment: A human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Quintanar-Gago, David A. & Nelson, Pamela F. & Díaz-Sánchez, à ngeles & Boldrick, Michael S., 2021. "Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
    12. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    13. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    17. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    18. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    19. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    20. Ji, Chenyi & Su, Xing & Qin, Zhongfu & Nawaz, Ahsan, 2022. "Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:175:y:2018:i:c:p:142-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.