IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v116y2013icp109-125.html
   My bibliography  Save this article

System resiliency quantification using non-state-space and state-space analytic models

Author

Listed:
  • Ghosh, Rahul
  • Kim, DongSeong
  • Trivedi, Kishor S.

Abstract

Resiliency is becoming an important service attribute for large scale distributed systems and networks. Key problems in resiliency quantification are lack of consensus on the definition of resiliency and systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of (system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However, effect of failure/repair on systems is already covered by reliability/availability measures and that of on individual jobs is well covered under the umbrella of performability [2] and task completion time analysis [3]. We use Laprie [4] and Simoncini [5]'s definition in which resiliency is the persistence of service delivery that can justifiably be trusted, when facing changes. The changes we are referring to here are beyond the envelope of system configurations already considered during system design, that is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency quantification. Using examples of non-state-space and state-space stochastic models, we analytically–numerically quantify the resiliency of system performance, reliability, availability and performability measures w.r.t. structural and parametric changes.

Suggested Citation

  • Ghosh, Rahul & Kim, DongSeong & Trivedi, Kishor S., 2013. "System resiliency quantification using non-state-space and state-space analytic models," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 109-125.
  • Handle: RePEc:eee:reensy:v:116:y:2013:i:c:p:109-125
    DOI: 10.1016/j.ress.2012.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gandoman, Foad H. & Ahmadi, Abdollah & Bossche, Peter Van den & Van Mierlo, Joeri & Omar, Noshin & Nezhad, Ali Esmaeel & Mavalizadeh, Hani & Mayet, Clément, 2019. "Status and future perspectives of reliability assessment for electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 1-16.
    2. Di Giandomenico, F. & Itria, M.L. & Masci, P. & Nostro, N., 2014. "Automated synthesis of dependable mediators for heterogeneous interoperable systems," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 220-232.
    3. Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
    4. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    5. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2018. "Numerical solution of reliability models described by stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 570-578.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:116:y:2013:i:c:p:109-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.