IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v151y2016icp46-59.html
   My bibliography  Save this article

Strengthening quantitative risk assessments by systematic treatment of uncertain assumptions

Author

Listed:
  • Berner, C.
  • Flage, R.

Abstract

The results of quantitative risk assessments (QRA) are conditional on the background knowledge on which the assessments are based, including phenomenological understanding, models, data and expert statements used, as well as assumptions made. Risk indices established in the risk assessment, such as individual risk numbers and f–N curves, may have a more or less solid foundation, depending for example on the validity of assumptions made. Poor models, lack of data or simplistic assumptions are examples of potential sources of uncertainty “hidden in the background knowledge†of a risk assessment. These uncertainties need to be reflected in the risk assessment. Recently, a method for treating uncertain assumptions in a QRA was suggested. The method is based on the different settings faced when making assumptions in risk assessments, considering beliefs about assumption deviation, sensitivity of the risk index to changes in the assumption, and the overall strength of knowledge involved. In the present paper we apply, test and adjust the method using a risk assessment of a lifting operation related to the oil and gas industry as a case. We find that an adjusted version of the method provides systematic guidance on how to treat uncertainties in a QRA.

Suggested Citation

  • Berner, C. & Flage, R., 2016. "Strengthening quantitative risk assessments by systematic treatment of uncertain assumptions," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 46-59.
  • Handle: RePEc:eee:reensy:v:151:y:2016:i:c:p:46-59
    DOI: 10.1016/j.ress.2015.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015002914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan-Erik Vinnem, 2014. "Offshore Risk Assessment vol 2," Springer Series in Reliability Engineering, Springer, edition 3, number 978-1-4471-5213-2, June.
    2. ., 2013. "A new analytical framework," Chapters, in: Private Property and Takings Compensation, chapter 1, pages 3-12, Edward Elgar Publishing.
    3. ., 2013. "Theoretical framework," Chapters, in: Corporate Governance, Enforcement and Financial Development, chapter 1, pages 6-56, Edward Elgar Publishing.
    4. Jan-Erik Vinnem, 2014. "Offshore Risk Assessment vol 1," Springer Series in Reliability Engineering, Springer, edition 3, number 978-1-4471-5207-1, June.
    5. ., 2013. "A framework for modeling Bank behavior," Chapters, in: Change and Continuity at the World Bank, chapter 3, pages 22-52, Edward Elgar Publishing.
    6. ., 2013. "Conceptual framework and analytical methodologies," Chapters, in: International Review of National Competitiveness, chapter 3, pages 23-58, Edward Elgar Publishing.
    7. Aven, Terje, 2010. "On how to define, understand and describe risk," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 623-631.
    8. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    2. Flage, Roger & Askeland, Tore, 2020. "Assumptions in quantitative risk assessments: When explicit and when tacit?," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    4. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    5. Juntao Zhang & Hyungju Kim & Yiliu Liu & Mary Ann Lundteigen, 2019. "Combining system-theoretic process analysis and availability assessment: A subsea case study," Journal of Risk and Reliability, , vol. 233(4), pages 520-536, August.
    6. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    7. Zhenhui Liu & Ajit Kumar Verma, 2022. "A novel toolbox for dropped object hit probability evaluation and orientation optimization of subsea lines," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1705-1713, August.
    8. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    10. Flage, Roger & Aven, Terje & Berner, Christine L., 2018. "A comparison between a probability bounds analysis and a subjective probability approach to express epistemic uncertainties in a risk assessment context – A simple illustrative example," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 1-10.
    11. Berner, Christine Louise & Flage, Roger, 2016. "Comparing and integrating the NUSAP notational scheme with an uncertainty based risk perspective," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 185-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jermakowicz, Eva K. & Reinstein, Alan & Churyk, Natalie Tatiana, 2014. "IFRS framework-based case study: DaimlerChrysler – Adopting IFRS accounting policies," Journal of Accounting Education, Elsevier, vol. 32(3), pages 288-304.
    2. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Churchwell, Jared S. & Zhang, Katherine S. & Saleh, Joseph H., 2018. "Epidemiology of helicopter accidents: Trends, rates, and covariates," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 373-384.
    4. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
    5. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    6. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    7. Andrzej Magruk, 2020. "Uncertainties, Knowledge, and Futures in Foresight Studies — A Case of the Industry 4.0," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 14(4), pages 20-33.
    8. Yuan Yang, 2019. "Reforming Health, Safety, and Environmental Regulation for Offshore Operations in China: Risk and Resilience Approaches?," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    9. Utne, Ingrid Bouwer & Rokseth, Børge & Sørensen, Asgeir J. & Vinnem, Jan Erik, 2020. "Towards supervisory risk control of autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    10. Montewka, Jakub & Goerlandt, Floris & Kujala, Pentti, 2014. "On a systematic perspective on risk for formal safety assessment (FSA)," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 77-85.
    11. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    12. Charles Sabel & Gary Herrigel & Peer Hull Kristensen, 2018. "Regulation under uncertainty: The coevolution of industry and regulation," Regulation & Governance, John Wiley & Sons, vol. 12(3), pages 371-394, September.
    13. Majeed Abimbola & Faisal Khan, 2018. "Dynamic Blowout Risk Analysis Using Loss Functions," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 255-271, February.
    14. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    15. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    16. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    17. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    18. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    19. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    20. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:151:y:2016:i:c:p:46-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.