IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v76y2014i5p925-947.html
   My bibliography  Save this article

Transformations and invariance in the sensitivity analysis of computer experiments

Author

Listed:
  • E. Borgonovo
  • S. Tarantola
  • E. Plischke
  • M. D. Morris

Abstract

type="main" xml:id="rssb12052-abs-0001"> Monotonic transformations are widely employed in statistics and data analysis. In computer experiments they are often used to gain accuracy in the estimation of global sensitivity statistics. However, one faces the question of interpreting results that are obtained on the transformed data back on the original data. The situation is even more complex in computer experiments, because transformations alter the model input–output mapping and distort the estimators. This work demonstrates that the problem can be solved by utilizing statistics which are monotonic transformation invariant. To do so, we offer an investigation into the families of metrics either based on densities or on cumulative distribution functions that are monotonic transformation invariant and we introduce a new generalized family of metrics. Numerical experiments show that transformations allow numerical convergence in the estimates of global sensitivity statistics, both invariant and not, in cases in which it would otherwise be impossible to obtain convergence. However, one fully exploits the increased numerical accuracy if the global sensitivity statistic is monotonic transformation invariant. Conversely, estimators of measures that do not have this invariance property might lead to misleading deductions.

Suggested Citation

  • E. Borgonovo & S. Tarantola & E. Plischke & M. D. Morris, 2014. "Transformations and invariance in the sensitivity analysis of computer experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 925-947, November.
  • Handle: RePEc:bla:jorssb:v:76:y:2014:i:5:p:925-947
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2014.76.issue-5
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    2. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    3. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    4. Emanuele Borgonovo & Marco Pangallo & Jan Rivkin & Leonardo Rizzo & Nicolaj Siggelkow, 2022. "Sensitivity analysis of agent-based models: a new protocol," Computational and Mathematical Organization Theory, Springer, vol. 28(1), pages 52-94, March.
    5. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    6. Rabitti, Giovanni & Borgonovo, Emanuele, 2020. "Is mortality or interest rate the most important risk in annuity models? A comparison of sensitivity analysis methods," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 48-58.
    7. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    8. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    9. Borgonovo, Emanuele & Caselli, Stefano & Cillo, Alessandra & Masciandaro, Donato & Rabitti, Giovanni, 2021. "Money, privacy, anonymity: What do experiments tell us?," Journal of Financial Stability, Elsevier, vol. 56(C).
    10. Andrea Marchiioni & Carlo Alberto Magni, 2016. "Sensitivity analysis and investment decisions: NPV-consistency of rates of return," Department of Economics 0089, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    11. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Di Maio, Francesco & Nicola, Giancarlo & Borgonovo, Emanuele & Zio, Enrico, 2016. "Invariant methods for an ensemble-based sensitivity analysis of a passive containment cooling system of an AP1000 nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 12-19.
    13. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    14. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    15. Marchioni, Andrea & Magni, Carlo Alberto, 2018. "Investment decisions and sensitivity analysis: NPV-consistency of rates of return," European Journal of Operational Research, Elsevier, vol. 268(1), pages 361-372.
    16. Lamboni, Matieyendou, 2019. "Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 67-92.
    17. Emanuele Borgonovo & Stefano Caselli & Alessandra Cillo & Donato Masciandaro & Giovanno Rabitti, 2018. "Cryptocurrencies, central bank digital cash, traditional money: does privacy matter?," BAFFI CAREFIN Working Papers 1895, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    18. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    19. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    20. Li, Luyi & Lu, Zhenzhou & Wu, Danqing, 2016. "A new kind of sensitivity index for multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 123-131.
    21. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    22. Borgonovo, Emanuele & Ghidini, Valentina & Hahn, Roman & Plischke, Elmar, 2023. "Explaining classifiers with measures of statistical association," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    23. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    24. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    25. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:76:y:2014:i:5:p:925-947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.