IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v140y2015icp130-141.html
   My bibliography  Save this article

Pivotal decomposition for reliability analysis of fault tolerant control systems on unmanned aerial vehicles

Author

Listed:
  • Hu, Bin
  • Seiler, Peter

Abstract

In this paper, we describe a framework to efficiently assess the reliability of fault tolerant control systems on low-cost unmanned aerial vehicles. The analysis is developed for a system consisting of a fixed number of actuators. In addition, the system includes a scheme to detect failures in individual actuators and, as a consequence, switch between different control algorithms for automatic operation of the actuators. Existing dynamic reliability analysis methods are insufficient for this class of systems because the coverage parameters for different actuator failures can be time-varying, correlated, and difficult to obtain in practice. We address these issues by combining new fault detection performance metrics with pivotal decomposition. These new metrics capture the interactions in different fault detection channels, and can be computed from stochastic models of fault detection algorithms. Our approach also decouples the high dimensional analysis problem into low dimensional sub-problems, yielding a computationally efficient analysis. Finally, we demonstrate the proposed method on a numerical example. The analysis results are also verified by Monte Carlo simulations.

Suggested Citation

  • Hu, Bin & Seiler, Peter, 2015. "Pivotal decomposition for reliability analysis of fault tolerant control systems on unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 130-141.
  • Handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:130-141
    DOI: 10.1016/j.ress.2015.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, J.D. & Poole, J. & Chen, W.H., 2013. "Fast mission reliability prediction for Unmanned Aerial Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 3-9.
    2. P Weber & D Theilliol & C Aubrun, 2008. "Component reliability in fault-diagnosis decision making based on dynamic Bayesian networks," Journal of Risk and Reliability, , vol. 222(2), pages 161-172, June.
    3. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    4. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    5. Ricardo J Rodríguez & Jorge Júlvez & José Merseguer, 2013. "Quantification and compensation of the impact of faults in system throughput," Journal of Risk and Reliability, , vol. 227(6), pages 614-628, December.
    6. Samia Maza, 2012. "Dynamic modelling and simulation of fault-tolerant systems based on stochastic activity networks," Journal of Risk and Reliability, , vol. 226(5), pages 455-463, October.
    7. Li, Shumin & Si, Shubin & Dui, Hongyan & Cai, Zhiqiang & Sun, Shudong, 2014. "A novel decision diagrams extension method," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 107-115.
    8. Qingqing Zhai & Rui Peng & Liudong Xing & Jun Yang, 2013. "Binary decision diagram-based reliability evaluation of k-out-of-(n + k) warm standby systems subject to fault-level coverage," Journal of Risk and Reliability, , vol. 227(5), pages 540-548, October.
    9. Samia Maza, 2014. "Stochastic activity networks for performance evaluation of fault-tolerant systems," Journal of Risk and Reliability, , vol. 228(3), pages 243-253, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Kai & Ye, Zhisheng & Liu, Datong & Peng, Xiyuan, 2021. "UAV flight control sensing enhancement with a data-driven adaptive fusion model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Li, Shumin & Xing, Liudong & Liu, Hanlin, 2019. "System performance-based joint importance analysis guided maintenance for repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 162-175.
    2. Mo, Yuchang & Xing, Liudong & Zhong, Farong & Pan, Zhusheng & Chen, Zhongyu, 2014. "Choosing a heuristic and root node for edge ordering in BDD-based network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 83-93.
    3. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    4. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    5. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    6. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    7. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    8. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    9. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    10. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    12. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    13. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    14. Edward J. Oughton & Daniel Ralph & Raghav Pant & Eireann Leverett & Jennifer Copic & Scott Thacker & Rabia Dada & Simon Ruffle & Michelle Tuveson & Jim W Hall, 2019. "Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2012-2031, September.
    15. Sheu, Shey-Huei & Chang, Chin-Chih & Chen, Yen-Luan & George Zhang, Zhe, 2015. "Optimal preventive maintenance and repair policies for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 78-87.
    16. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    17. Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Cui, Lijie & Lu, Zhenzhou & Wang, Pan & Wang, Weihu, 2014. "The ordering importance measure of random variable and its estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 132-143.
    19. Wang, Fan & Li, Heng, 2018. "System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 94-104.
    20. Jung, Woo Sik, 2015. "A method to improve cutset probability calculation in probabilistic safety assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 134-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:130-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.