IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v139y2015icp105-112.html
   My bibliography  Save this article

Estimation of the lifetime distribution of mechatronic systems in the presence of a covariate: A comparison among parametric, semiparametric and nonparametric models

Author

Listed:
  • Bobrowski, Sebastian
  • Chen, Hong
  • Döring, Maik
  • Jensen, Uwe
  • Schinköthe, Wolfgang

Abstract

In practice manufacturers may have lots of failure data of similar products using the same technology basis under different operating conditions. Thus, one can try to derive predictions for the distribution of the lifetime of newly developed components or new application environments through the existing data using regression models based on covariates.

Suggested Citation

  • Bobrowski, Sebastian & Chen, Hong & Döring, Maik & Jensen, Uwe & Schinköthe, Wolfgang, 2015. "Estimation of the lifetime distribution of mechatronic systems in the presence of a covariate: A comparison among parametric, semiparametric and nonparametric models," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 105-112.
  • Handle: RePEc:eee:reensy:v:139:y:2015:i:c:p:105-112
    DOI: 10.1016/j.ress.2015.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015000575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samrout, M. & Châtelet, E. & Kouta, R. & Chebbo, N., 2009. "Optimization of maintenance policy using the proportional hazard model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 44-52.
    2. Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.
    3. Dabrowska, D. M., 1995. "Nonparametric Regression with Censored Covariates," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 253-283, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    2. Abdoulaye Diamoutene & Farid Noureddine & Rachid Noureddine & Bernard Kamsu-Foguem & Diakarya Barro, 2020. "Proportional hazard model for cutting tool recovery in machining," Journal of Risk and Reliability, , vol. 234(2), pages 322-332, April.
    3. Hong Chen & Maik Döring & Uwe Jensen, 2018. "Test for model selection using Cramér–von Mises distance in a fixed design regression setting," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 505-535, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    2. repec:iab:iabfme:200709(en is not listed on IDEAS
    3. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    4. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    5. Chrianna I Bharat & Kevin Murray & Edward Cripps & Melinda R Hodkiewicz, 2018. "Methods for displaying and calibration of Cox proportional hazards models," Journal of Risk and Reliability, , vol. 232(1), pages 105-115, February.
    6. Wilke, Ralf A. & Wichert, Laura, 2005. "Application of a simple nonparametric conditional quantile function estimator in unemployment duration analysis," ZEW Discussion Papers 05-67 [rev.], ZEW - Leibniz Centre for European Economic Research.
    7. Briš, Radim & Byczanski, Petr, 2013. "Effective computing algorithm for maintenance optimization of highly reliable systems," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 77-85.
    8. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    9. Shafiee, Mahmood & Finkelstein, Maxim & Chukova, Stefanka, 2011. "On optimal upgrade level for used products under given cost structures," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 286-291.
    10. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    11. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    12. Jing Qian & Sy Han Chiou & Jacqueline E. Maye & Folefac Atem & Keith A. Johnson & Rebecca A. Betensky, 2018. "Threshold regression to accommodate a censored covariate," Biometrics, The International Biometric Society, vol. 74(4), pages 1261-1270, December.
    13. Santosh B. Rane & Yahya A.M. Narvel & Niloy Khatua, 2017. "Development of mechanism for mounting secondary isolating contacts (SICs) in air circuit breakers (ACBs) with high operational reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1816-1831, November.
    14. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    15. Du, Yi-Mu & Sun, C.P., 2022. "A novel interpretable model of bathtub hazard rate based on system hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    17. Jiang, R., 2014. "A drawback and an improvement of the classical Weibull probability plot," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 135-142.
    18. Debbarh, Mohammed & Viallon, Vivian, 2008. "Testing additivity in nonparametric regression under random censorship," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2584-2591, November.
    19. Shuyuan Gan & Bolun Wang & Zhifang Song, 2021. "A Combined Maintenance Strategy Considering Spares, Buffer, and Quality," Journal of Risk and Reliability, , vol. 235(3), pages 431-445, June.
    20. Filippo Domma & Francesca Condino & Božidar V. Popović, 2017. "A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2978-2993, December.
    21. Gao, Xueli & Barabady, Javad & Markeset, Tore, 2010. "An approach for prediction of petroleum production facility performance considering Arctic influence factors," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 837-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:139:y:2015:i:c:p:105-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.