IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v130y2014icp42-49.html
   My bibliography  Save this article

Modeling automotive safety mechanisms: A Markovian approach

Author

Listed:
  • Cherfi, Abraham
  • Leeman, Michel
  • Meurville, Florent
  • Rauzy, Antoine

Abstract

Cars embed a steadily increasing number of electric and electronic systems. One of the means at hand to enhance the safety of these systems is to reinforce them with so-called safety mechanisms. The ISO 26262 standard discusses at length how to estimate the contribution of these mechanisms to functional safety. These calculations rely however on fault tree models or ad-hoc formulas that are hard to check for completeness and validity. In this article, we propose generic Markov models for electric and electronic systems protected by first and second order safety mechanisms. These models are of a great help to clarify the behavior of these systems as well as to determine the domain of validity of simpler models such the above mentioned fault trees or ad-hoc formulas. Experimental results make it possible to have a better understanding of which parameters really matter in terms of safety.

Suggested Citation

  • Cherfi, Abraham & Leeman, Michel & Meurville, Florent & Rauzy, Antoine, 2014. "Modeling automotive safety mechanisms: A Markovian approach," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 42-49.
  • Handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:42-49
    DOI: 10.1016/j.ress.2014.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2011. "Reliability performance of safety instrumented systems: A common approach for both low- and high-demand mode of operation," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 365-373.
    2. F Innal & Y Dutuit & A Rauzy & J-P Signoret, 2010. "New insight into the average probability of failure on demand and the probability of dangerous failure per hour of safety instrumented systems," Journal of Risk and Reliability, , vol. 224(2), pages 75-86, June.
    3. Boiteau, M. & Dutuit, Y. & Rauzy, A. & Signoret, J.-P., 2006. "The AltaRica data-flow language in use: modeling of production availability of a multi-state system," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 747-755.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    2. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    3. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    4. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    5. Eisinger, S. & Oliveira, L.F., 2021. "Evaluating the safety integrity of safety systems for all values of the demand rate," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    6. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    7. Brissaud, Florent & Barros, Anne & Bérenguer, Christophe & Charpentier, Dominique, 2011. "Reliability analysis for new technology-based transmitters," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 299-313.
    8. Jon T Selvik & Eirik B Abrahamsen, 2017. "On the meaning of accuracy and precision in a risk analysis context," Journal of Risk and Reliability, , vol. 231(2), pages 91-100, April.
    9. Redutskiy Yury & Balycheva Marina & Dybdahl Hendrik, 2022. "Employee scheduling and maintenance planning for safety systems at the remotely located oil and gas industrial facilities," Engineering Management in Production and Services, Sciendo, vol. 14(4), pages 1-21, December.
    10. Desgeorges, Loïc & Piriou, Pierre-Yves & Lemattre, Thibault & Chraibi, Hassane, 2021. "Formalism and semantics of PyCATSHOO: A simulator of distributed stochastic hybrid automata," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Cacheux, Pierre-Joseph & Collas, Stéphane & Dutuit, Yves & Folleau, Cyrille & Signoret, Jean-Pierre & Thomas, Philippe, 2013. "Assessment of the expected number and frequency of failures of periodically tested systems," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 61-70.
    12. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2013. "New PFH-formulas for k-out-of-n:F-systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 112-118.
    13. Michel Batteux & Tatiana Prosvirnova & Antoine Rauzy, 2017. "AltaRica 3.0 assertions: The whys and wherefores," Journal of Risk and Reliability, , vol. 231(6), pages 691-700, December.
    14. David, Pierre & Idasiak, Vincent & Kratz, Frédéric, 2010. "Reliability study of complex physical systems using SysML," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 431-450.
    15. Signoret, Jean-Pierre & Dutuit, Yves & Cacheux, Pierre-Joseph & Folleau, Cyrille & Collas, Stéphane & Thomas, Philippe, 2013. "Make your Petri nets understandable: Reliability block diagrams driven Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 61-75.
    16. Redutskiy, Yury & Camitz-Leidland, Cecilie M. & Vysochyna, Anastasiia & Anderson, Kristanna T. & Balycheva, Marina, 2021. "Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. H. Metatla & M. Rouainia, 2022. "Functional and dysfunctional analysis of a safety instrumented system (SIS) through the common cause failures (CCFs) assessment. Case of high integrity protection pressure system (HIPPS)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1932-1954, August.
    18. Zhang, Huilong & Innal, Fares & Dufour, François & Dutuit, Yves, 2014. "Piecewise Deterministic Markov Processes based approach applied to an offshore oil production system," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 126-134.
    19. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    20. Liu, Yiliu, 2014. "Optimal staggered testing strategies for heterogeneously redundant safety systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 65-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:42-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.