IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v593y2022ics0378437122000322.html
   My bibliography  Save this article

Born machine model based on matrix product state quantum circuit

Author

Listed:
  • Gong, Li-Hua
  • Xiang, Ling-Zhi
  • Liu, Si-Hang
  • Zhou, Nan-Run

Abstract

Born machine model based on the probability interpretation of the wave function combining quantum information theory with machine learning method provides a new tool to study the generative models. The Born machine model with a general parameterized quantum circuit generally requires the same number of qubits as the sample feature size of the dataset to be processed, while each sample usually contains thousands of features in actual dataset. A novel Born machine model with a matrix product state quantum circuit is proposed, which requires less qubits than that with a general parameterized quantum circuit, so it can make better use of scarce qubit resources in near-term quantum devices. And the presented Born machine model is trained with the maximal mean discrepancy loss function. The learning process of the proposed Born machine model is numerically simulated on the Bars-and-Stripes dataset. The simulation results verify the feasibility of the Born machine model with the matrix product state quantum circuit.

Suggested Citation

  • Gong, Li-Hua & Xiang, Ling-Zhi & Liu, Si-Hang & Zhou, Nan-Run, 2022. "Born machine model based on matrix product state quantum circuit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
  • Handle: RePEc:eee:phsmap:v:593:y:2022:i:c:s0378437122000322
    DOI: 10.1016/j.physa.2022.126907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122000322
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.126907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    2. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Chenyi & Huang, Fei & Dai, Jingyi & Zhou, Nanrun, 2022. "Quantum SUSAN edge detection based on double chains quantum genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Zeng, Qing-Wei & Ge, Hong-Ying & Gong, Chen & Zhou, Nan-Run, 2023. "Conditional quantum circuit Born machine based on a hybrid quantum–classical​ framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiang & Ou, Guiyan & Liu, Xiaohui & Dong, Ke, 2022. "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence," Journal of Informetrics, Elsevier, vol. 16(2).
    2. Jean-David Fermanian & Dominique Guégan, 2021. "Fair learning with bagging," Documents de travail du Centre d'Economie de la Sorbonne 21034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Martin L. Hazelton & Tilman M. Davies, 2022. "Pointwise comparison of two multivariate density functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1791-1810, December.
    4. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    5. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    6. Li, Nianqiao & Yan, Fei & Hirota, Kaoru, 2022. "Quantum data visualization: A quantum computing framework for enhancing visual analysis of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    7. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    8. Pavia, Jose M., 2015. "Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(c01).
    9. Lucio Sarno, 2003. "Nonlinear Exchange Rate Models: A Selective Overview," Rivista di Politica Economica, SIPI Spa, vol. 93(4), pages 3-46, July-Augu.
    10. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    11. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    12. Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles & Sevvandi Kandanaarachchi & Mario A Munoz, 2018. "Anomaly detection in streaming nonstationary temporal data," Monash Econometrics and Business Statistics Working Papers 4/18, Monash University, Department of Econometrics and Business Statistics.
    13. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    14. Laura Böhm & Sebastian Kolb & Thomas Plankenbühler & Jonas Miederer & Simon Markthaler & Jürgen Karl, 2023. "Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 16(18), pages 1-25, September.
    15. Cees Diks & Valentyn Panchenko, 2005. "Nonparametric Tests for Serial Independence Based on Quadratic Forms," Tinbergen Institute Discussion Papers 05-076/1, Tinbergen Institute.
    16. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Jean-David Fermanian & Dominique Guegan, 2021. "Fair learning with bagging," Post-Print halshs-03500906, HAL.
    18. Juan Carlos Pardo-Fernández & María Dolores Jiménez-Gamero & Anouar El Ghouch, 2015. "A Non-parametric ANOVA-type Test for Regression Curves Based on Characteristic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 197-213, March.
    19. Jonas Jäger & Roman V. Krems, 2023. "Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Pablo Martínez-Camblor & Jacobo Uña-Álvarez, 2013. "Studying the bandwidth in $$k$$ -sample smooth tests," Computational Statistics, Springer, vol. 28(2), pages 875-892, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:593:y:2022:i:c:s0378437122000322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.