IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v37y2017i1p147-159.html
   My bibliography  Save this article

An Adaptive Simulation Framework for the Exploration of Extreme and Unexpected Events in Dynamic Engineered Systems

Author

Listed:
  • Pietro Turati
  • Nicola Pedroni
  • Enrico Zio

Abstract

The end states reached by an engineered system during an accident scenario depend not only on the sequences of the events composing the scenario, but also on their timing and magnitudes. Including these additional features within an overarching framework can render the analysis infeasible in practical cases, due to the high dimension of the system state‐space and the computational effort correspondingly needed to explore the possible system evolutions in search of the interesting (and very rare) ones of failure. To tackle this hurdle, in this article we introduce a framework for efficiently probing the space of event sequences of a dynamic system by means of a guided Monte Carlo simulation. Such framework is semi‐automatic and allows embedding the analyst's prior knowledge about the system and his/her objectives of analysis. Specifically, the framework allows adaptively and intelligently allocating the simulation efforts preferably on those sequences leading to outcomes of interest for the objectives of the analysis, e.g., typically those that are more safety‐critical (and/or rare). The emerging diversification in the filling of the state‐space by the preference‐guided exploration allows also the retrieval of critical system features, which can be useful to analysts and designers for taking appropriate means of prevention and mitigation of dangerous and/or unexpected consequences. A dynamic system for gas transmission is considered as a case study to demonstrate the application of the method.

Suggested Citation

  • Pietro Turati & Nicola Pedroni & Enrico Zio, 2017. "An Adaptive Simulation Framework for the Exploration of Extreme and Unexpected Events in Dynamic Engineered Systems," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 147-159, January.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:1:p:147-159
    DOI: 10.1111/risa.12593
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12593
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chris Garrett & George Apostolakis, 1999. "Context in the Risk Assessment of Digital Systems," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 23-32, February.
    2. Catalyurek, Umit & Rutt, Benjamin & Metzroth, Kyle & Hakobyan, Aram & Aldemir, Tunc & Denning, Richard & Dunagan, Sean & Kunsman, David, 2010. "Development of a code-agnostic computational infrastructure for the dynamic generation of accident progression event trees," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 278-294.
    3. Vicki M. Bier & Yacov Y. Haimes & James H. Lambert & Nicholas C. Matalas & Rae Zimmerman, 1999. "A Survey of Approaches for Assessing and Managing the Risk of Extremes," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 83-94, February.
    4. Francesco Di Maio & Samuele Baronchelli & Enrico Zio, 2015. "A Computational Framework for Prime Implicants Identification in Noncoherent Dynamic Systems," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 142-156, January.
    5. Elisabeth Paté‐Cornell, 2002. "Finding and Fixing Systems Weaknesses: Probabilistic Methods and Applications of Engineering Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 319-334, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    2. Qiao, Yidan & Zhang, Xian & Wang, Hanyu & Chen, Dengkai, 2024. "Dynamic assessment method for human factor risk of manned deep submergence operation system based on SPAR-H and SD," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisabeth Paté‐Cornell, 2012. "On “Black Swans” and “Perfect Storms”: Risk Analysis and Management When Statistics Are Not Enough," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1823-1833, November.
    2. Francesco Di Maio & Samuele Baronchelli & Enrico Zio, 2015. "A Computational Framework for Prime Implicants Identification in Noncoherent Dynamic Systems," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 142-156, January.
    3. Picoco, Claudia & Rychkov, Valentin & Aldemir, Tunc, 2020. "A framework for verifying Dynamic Probabilistic Risk Assessment models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    5. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    6. Maria Iglesias-Mendoza & Akilu Yunusa-Kaltungo & Sara Hadleigh-Dunn & Ashraf Labib, 2021. "Learning How to Learn from Disasters through a Comparative Dichotomy Analysis: Grenfell Tower and Hurricane Katrina Case Studies," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    7. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    8. Qian Zhou & James H. Lambert & Christopher W. Karvetski & Jeffrey M. Keisler & Igor Linkov, 2012. "Flood Protection Diversification to Reduce Probabilities of Extreme Losses," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1873-1887, November.
    9. Bishop, Peter & Bloomfield, Robin & Littlewood, Bev & Popov, Peter & Povyakalo, Andrey & Strigini, Lorenzo, 2014. "A conservative bound for the probability of failure of a 1-out-of-2 protection system with one hardware-only and one software-based protection train," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 61-68.
    10. Bellaera, R. & Bonifetto, R. & Di Maio, F. & Pedroni, N. & Savoldi, L. & Zanino, R. & Zio, E., 2020. "Integrated deterministic and probabilistic safety assessment of a superconducting magnet cryogenic cooling circuit for nuclear fusion applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Nicolae Brînzei & Jean-François Aubry, 2018. "Graphs models and algorithms for reliability assessment of coherent and non-coherent systems," Journal of Risk and Reliability, , vol. 232(2), pages 201-215, April.
    12. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    13. Convertino, Matteo & Annis, Antonio & Nardi, Fernando, 2019. "Information-theoretic Portfolio Decision Model for Optimal Flood Management," Earth Arxiv k5aut, Center for Open Science.
    14. Rahman, S. & Karanki, D.R. & Epiney, A. & Wicaksono, D. & Zerkak, O. & Dang, V.N., 2018. "Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 62-78.
    15. Hongyang Yu & Faisal Khan & Brian Veitch, 2017. "A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1668-1682, September.
    16. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2019. "An integrated approach for real-time hazard mitigation in complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 297-309.
    17. James D. Englehardt, 2002. "Scale Invariance of Incident Size Distributions in Response to Sizes of Their Causes," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 369-381, April.
    18. Thieme, Christoph A. & Mosleh, Ali & Utne, Ingrid B. & Hegde, Jeevith, 2020. "Incorporating software failure in risk analysis – Part 1: Software functional failure mode classification," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    19. Nima Khakzad & Faisal Khan & Paul Amyotte, 2015. "Major Accidents (Gray Swans) Likelihood Modeling Using Accident Precursors and Approximate Reasoning," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1336-1347, July.
    20. Karanki, Durga Rao & Dang, Vinh N., 2016. "Quantification of Dynamic Event Trees – A comparison with event trees for MLOCA scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 19-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:1:p:147-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.