IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v117y2017ipap1-11.html
   My bibliography  Save this article

Integrated assessment of process pollution prevention and end-of-pipe control in secondary lead smelting

Author

Listed:
  • Li, Yanping
  • Su, Zhen
  • Qiao, Qi
  • Hu, Xuewen
  • Wan, Si
  • Zhao, Ruonan

Abstract

Based on the Conservation Law, the equations and variables of the process pollution prevention and EPC were established for a given product process. The eco-efficiency indicator including resource efficiency (r) and environmental efficiency (q) is pointed out as the integrated assessment of the process pollution prevention and end-of-pipe control. Substance Flow Analysis (SFA) was adopted to account all the integrated assessment indicators for three typical secondary lead smelting technologies: Mixed smelting process (MSP), Pre-desulfurization smelting process (PDSP) and Hydro-metallurgical smelting process (HMP). Based on the site monitoring and statistical data collection, there are 15 secondary lead production enterprises covering all the three smelting processes and 87.67% production capacity of sec-lead production of China in 2014. The result of integrated assessment shows us that lead pollution emission load is the result of co-control of process pollution prevention and end-of-pipe control. The environmental efficiency of different technology is PDSP>HSP>MSP without any process pollution prevention or end-of-pipe control. The effect of process pollution prevention improving the eco-efficiency varies due to different technology along with HSP>PDSP>MSP and for different sub-process of different technology. Under the co-control of process pollution prevention and end-of-pipe control, the HSP will be the best available smelting technology for secondary smelting industry.

Suggested Citation

  • Li, Yanping & Su, Zhen & Qiao, Qi & Hu, Xuewen & Wan, Si & Zhao, Ruonan, 2017. "Integrated assessment of process pollution prevention and end-of-pipe control in secondary lead smelting," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 1-11.
  • Handle: RePEc:eee:recore:v:117:y:2017:i:pa:p:1-11
    DOI: 10.1016/j.resconrec.2015.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915301300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Xi & Gong, Yu & Wu, Yufeng & Agyeiwaa, Amma & Zuo, Tieyong, 2014. "Management of used lead acid battery in China: Secondary lead industry progress, policies and problems," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 75-84.
    2. Perrine Chancerel & Christina E.M. Meskers & Christian Hagelüken & Vera Susanne Rotter, 2009. "Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 791-810, October.
    3. Bai, Lu & Qiao, Qi & Li, Yanping & Wan, Si & Xie, Minghui & Chai, Fahe, 2015. "Statistical entropy analysis of substance flows in a lead smelting process," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 118-128.
    4. Manuel Frondel & Jens Horbach & Klaus Rennings, 2007. "End‐of‐pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries," Business Strategy and the Environment, Wiley Blackwell, vol. 16(8), pages 571-584, December.
    5. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    6. Rabah, M.A & Barakat, M.A, 2001. "Energy saving and pollution control for short rotary furnace in secondary lead smelters," Renewable Energy, Elsevier, vol. 23(3), pages 561-577.
    7. Cha, Kyounghoon & Son, Minjung & Matsuno, Yasunari & Fthenakis, Vasilis & Hur, Tak, 2013. "Substance flow analysis of cadmium in Korea," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 31-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoqian & Wang, Chang'an & Zhao, Shikuan & Ding, Jian & Jia, You, 2024. "Role of Fintech adoption in the impact of sustainable policy intervention on enterprise transformation in resource-based cities: Evidence from China," Resources Policy, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Lu & Qiao, Qi & Li, Yanping & Wan, Si & Xie, Minghui & Chai, Fahe, 2015. "Statistical entropy analysis of substance flows in a lead smelting process," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 118-128.
    2. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    3. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    4. Christoph P. Kiefer & Pablo Del Río González & Javier Carrillo‐Hermosilla, 2019. "Drivers and barriers of eco‐innovation types for sustainable transitions: A quantitative perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 155-172, January.
    5. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    6. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    7. Yu-Hong Ai & Di-Yun Peng & Huan-Huan Xiong, 2021. "Impact of Environmental Regulation Intensity on Green Technology Innovation: From the Perspective of Political and Business Connections," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    8. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    9. Na Zhang & Jinqian Deng & Fayyaz Ahmad & Muhammad Umar Draz & Nabila Abid, 2023. "The dynamic association between public environmental demands, government environmental governance, and green technology innovation in China: evidence from panel VAR model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9851-9875, September.
    10. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    11. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    12. Milovantseva, Natalia & Fitzpatrick, Colin, 2015. "Barriers to electronics reuse of transboundary e-waste shipment regulations: An evaluation based on industry experiences," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 170-177.
    13. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    14. Salina P. Siddique & Nick Sciulli, 2018. "Sustainable development of small companies: Investors' perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1258-1271, December.
    15. Liu, Feng & van den Bergh, Jeroen & Wei, Yihang, 2024. "Testing mechanisms through which China's ETS promotes a low-carbon transition," Energy Economics, Elsevier, vol. 132(C).
    16. Ehsan Namdar Joyami & Nour Mohammad Yaghoubi & Seyed AliGholi Rowshan, 2024. "Quality Management and Environmental Management: Role of Knowledge Transfer and Organizational Innovation in Knowledge-Based Firms," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 8457-8494, June.
    17. Myoungjin Oh & Jungwoo Shin & Pil‐Ju Park & Sunmee Kim, 2020. "Does eco‐innovation drive sales and technology investment? Focusing on eco‐label in Korea," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3174-3186, December.
    18. Marin, Giovanni & Vona, Francesco, 2023. "Finance and the reallocation of scientific, engineering and mathematical talent," Research Policy, Elsevier, vol. 52(5).
    19. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    20. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    21. Roberto Antonietti & Alberto Marzucchi, 2013. "Green Investment Strategies and Export Performance: A Firm-level Investigation," Working Papers 2013.76, Fondazione Eni Enrico Mattei.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:117:y:2017:i:pa:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.