IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v73y2013icp172-179.html
   My bibliography  Save this article

An analysis of water management in Brazilian petroleum refineries using rationalization techniques

Author

Listed:
  • Pombo, Felipe Ramalho
  • Magrini, Alessandra
  • Szklo, Alexandre

Abstract

This study assesses the application of rationalization techniques in oil refineries to preserve freshwater resources. These techniques include conservation, recycling and reuse of water and Pinch technique. Several refineries in the world use treated household wastewater. In Brazil, a country with expanding refining capacity, this practice is planned for two refineries. Water conservation and recycling initiatives also hold promise, including reduction of losses, replacement of cooling towers with smaller units and recycling of blowdown into cooling towers and steam generation systems. Some technologies gain importance for wastewater reuse, such as ion exchange, nanofiltration and advanced oxidative processes. Finally, the application of the Pinch technique reduces the withdrawal of water and its associated costs. Thus, this method is appropriate in areas with scarce water, where some new Brazilian refineries are slated for construction.

Suggested Citation

  • Pombo, Felipe Ramalho & Magrini, Alessandra & Szklo, Alexandre, 2013. "An analysis of water management in Brazilian petroleum refineries using rationalization techniques," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 172-179.
  • Handle: RePEc:eee:recore:v:73:y:2013:i:c:p:172-179
    DOI: 10.1016/j.resconrec.2013.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913000335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matsumura, E.M. & Mierzwa, J.C., 2008. "Water conservation and reuse in poultry processing plant—A case study," Resources, Conservation & Recycling, Elsevier, vol. 52(6), pages 835-842.
    2. Szklo, Alexandre & Schaeffer, Roberto, 2007. "Fuel specification, energy consumption and CO2 emission in oil refineries," Energy, Elsevier, vol. 32(7), pages 1075-1092.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.
    2. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    3. Gomes, Gabriel Lourenço & Szklo, Alexandre & Schaeffer, Roberto, 2009. "The impact of CO2 taxation on the configuration of new refineries: An application to Brazil," Energy Policy, Elsevier, vol. 37(12), pages 5519-5529, December.
    4. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    5. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    6. Klemeš, Jiří Jaromír & Kravanja, Zdravko & Varbanov, Petar Sabev & Lam, Hon Loong, 2013. "Advanced multimedia engineering education in energy, process integration and optimisation," Applied Energy, Elsevier, vol. 101(C), pages 33-40.
    7. Szklo, Alexandre & Schaeffer, Roberto & Delgado, Fernanda, 2007. "Can one say ethanol is a real threat to gasoline?," Energy Policy, Elsevier, vol. 35(11), pages 5411-5421, November.
    8. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    9. Faraz Qasim & Doug Hyung Lee & Jongkuk Won & Jin-Kuk Ha & Sang Jin Park, 2021. "Development of Advanced Advisory System for Anomalies (AAA) to Predict and Detect the Abnormal Operation in Fired Heaters for Real Time Process Safety and Optimization," Energies, MDPI, vol. 14(21), pages 1-24, November.
    10. Thambiran, Tirusha & Diab, Roseanne D., 2011. "Air quality and climate change co-benefits for the industrial sector in Durban, South Africa," Energy Policy, Elsevier, vol. 39(10), pages 6658-6666, October.
    11. Nugroho, Yohanes Kristianto & Zhu, Liandong, 2019. "Platforms planning and process optimization for biofuels supply chain," Renewable Energy, Elsevier, vol. 140(C), pages 563-579.
    12. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    13. Silva, J.A.M. & Oliveira, S., 2014. "An exergy-based approach to determine production cost and CO2 allocation in refineries," Energy, Elsevier, vol. 67(C), pages 607-616.
    14. Daria Surovtseva & Enda Crossin & Robert Pell & Laurence Stamford, 2022. "Toward a life cycle inventory for graphite production," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 964-979, June.
    15. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    16. Lamorlette, Aymeric, 2022. "A dynamic model for liquid fossil fuel production based on gross product/ERoEI coupling," Energy, Elsevier, vol. 260(C).
    17. Bussman, W.R. & Baukal, C.E., 2009. "Ambient condition effects on process heater efficiency," Energy, Elsevier, vol. 34(10), pages 1624-1635.
    18. Henriques Jr., Mauricio F. & Dantas, Fabrício & Schaeffer, Roberto, 2010. "Potential for reduction of CO2 emissions and a low-carbon scenario for the Brazilian industrial sector," Energy Policy, Elsevier, vol. 38(4), pages 1946-1961, April.
    19. Liu, Xiaoyu & Chen, Dingjiang & Zhang, Wenjun & Qin, Weizhong & Zhou, Wenji & Qiu, Tong & Zhu, Bing, 2013. "An assessment of the energy-saving potential in China's petroleum refining industry from a technical perspective," Energy, Elsevier, vol. 59(C), pages 38-49.
    20. Ng, Yi Cheng & Lipiński, Wojciech, 2012. "Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production," Energy, Elsevier, vol. 44(1), pages 720-731.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:73:y:2013:i:c:p:172-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.