IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp1144-1151.html
   My bibliography  Save this article

Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure

Author

Listed:
  • Zeb, Iftikhar
  • Ma, Jingwei
  • Frear, Craig
  • Zhao, Quanbao
  • Ndegwa, Pius
  • Yao, Yiqing
  • Kafle, Gopi Krishna

Abstract

The major concern of recycling anaerobic digestion (AD) effluent in the digester centers on accumulation of total ammonia nitrogen (TAN) and salinity, both of which can potentially inhibit methane production. In the current study, 30%, 50%, and 80% of separated-liquid AD effluent, were recycled in a series of batch AD experiments. The inhibitions to specific methane potential (SMP) caused by TAN and salinity were evaluated. Recycling up to 80% of un-treated effluent resulted in the best SMP averaging 0.265 ± 0.005 m3 [CH4] Kg−1 [volatile solids], which averaged 10% more compared to recycling 80% treated effluent and 5% more compared to no recycling (the control). After acclimation, up to 6.39 g N L−1 increase in TAN resulted in SMP averaging 0.112 ± 0.002 m3 [CH4] Kg−1 [volatile solids] and up to 12 parts per thousand increase in salinity resulted in SMP averaging 0.163 ± 0.005 m3 [CH4] Kg−1 [volatile solids]. A mass balance for a hypothetical 5000 cows dairy farm showed effluent recycle of up to 66% for maintaining 8% solids in anaerobic digester. Moreover, in the proposed system, the effluent going off-farm was on w/w basis 64% less water, 66% less solids, and 52% less nitrogen compared to the effluent produced with no recycle facility.

Suggested Citation

  • Zeb, Iftikhar & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Ndegwa, Pius & Yao, Yiqing & Kafle, Gopi Krishna, 2017. "Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure," Energy, Elsevier, vol. 119(C), pages 1144-1151.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1144-1151
    DOI: 10.1016/j.energy.2016.11.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216317030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabrielle M. Myers & Daniel S. Andersen & Bobby J. Martens & D. Raj Raman, 2023. "Cost Assessment of Centralizing Swine Manure and Corn Stover Co-Digestion Systems," Energies, MDPI, vol. 16(11), pages 1-17, May.
    2. Furqan Muhayodin & Albrecht Fritze & Oliver Christopher Larsen & Marcel Spahr & Vera Susanne Rotter, 2021. "Co-Digestion of Rice Straw with Cow Manure in an Innovative Temperature Phased Anaerobic Digestion Technology: Performance Evaluation and Trace Elements," Energies, MDPI, vol. 14(9), pages 1-20, April.
    3. Vondra, Marek & Máša, Vítězslav & Bobák, Petr, 2018. "The energy performance of vacuum evaporators for liquid digestate treatment in biogas plants," Energy, Elsevier, vol. 146(C), pages 141-155.
    4. Czekała, Wojciech & Bartnikowska, Sylwia & Dach, Jacek & Janczak, Damian & Smurzyńska, Anna & Kozłowski, Kamil & Bugała, Artur & Lewicki, Andrzej & Cieślik, Marta & Typańska, Dorota & Mazurkiewicz, Ja, 2018. "The energy value and economic efficiency of solid biofuels produced from digestate and sawdust," Energy, Elsevier, vol. 159(C), pages 1118-1122.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    2. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    4. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    5. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    6. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    7. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    8. Massimiliano Boccarossa & Martina Di Addario & Adele Folino & Fabio Tatàno, 2021. "Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy)," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    9. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    10. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    11. Uddin, Md Mosleh & Simson, Amanda & Wright, Mark Mba, 2020. "Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel," Energy, Elsevier, vol. 211(C).
    12. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    13. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    14. Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.
    15. Wang, Haoqi & Zhang, Siduo & Bi, Xiaotao & Clift, Roland, 2020. "Greenhouse gas emission reduction potential and cost of bioenergy in British Columbia, Canada," Energy Policy, Elsevier, vol. 138(C).
    16. Chen, Ting & Shen, Dongsheng & Jin, Yiying & Li, Hailong & Yu, Zhixin & Feng, Huajun & Long, Yuyang & Yin, Jun, 2017. "Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model," Applied Energy, Elsevier, vol. 208(C), pages 666-677.
    17. Weidong Huang, 2015. "An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy," Sustainability, MDPI, vol. 7(1), pages 1-15, January.
    18. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    19. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    20. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1144-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.