IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v52y2008i7p955-964.html
   My bibliography  Save this article

Exploring e-waste management systems in the United States

Author

Listed:
  • Kahhat, Ramzy
  • Kim, Junbeum
  • Xu, Ming
  • Allenby, Braden
  • Williams, Eric
  • Zhang, Peng

Abstract

Quantities of end-of-life electronics (or e-waste) around the world keep growing. More than 1.36million metric tons of e-waste were discarded, mainly in landfills, in the U.S. in 2005, and e-waste is projected to grow in the next few years. This paper explores issues relating to planning future e-waste regulation and management systems in the U.S. It begins by reviewing the existing U.S. recycling systems in the U.S. to establish the importance of developing public responses. Other countries and regions around the world have already legislated and implemented electronic takeback and recycling systems. To establish the context of existing experience, e-waste management systems in the European Union, Japan, South Korea and Taiwan are explored. The paper then discusses what specific conditions are expected to influence the acceptability and implementation in the U.S. A key consideration is the cultural imperative in the U.S. for market-driven solutions that enable competition. Given this context, a solution is proposed that is designed to ensure a proper end-of-life option while at the same time establishing a competitive market for reuse and recycling services. The solution, termed e-Market for Returned Deposit, begins with a deposit paid by consumers to sellers at the time of purchase, electronically registered and tracked via a radio-frequency identification device (RFID) placed on the product. At end-of-life, consumers consult an Internet-enabled market in which firms compete to receive the deposit by offering consumers variable degrees of return on the deposit. After collection of the computer by the selected firm, the cyberinfrastructure utilizes the RFID to transfer the deposit to the winning firm when recycled. If the firm chooses to refurbish or resell the computer in lieu of recycling, the transfer is deferred until true end-of-life processing. Finally the paper discusses the domestic and international consequences of the implementation of the proposed design.

Suggested Citation

  • Kahhat, Ramzy & Kim, Junbeum & Xu, Ming & Allenby, Braden & Williams, Eric & Zhang, Peng, 2008. "Exploring e-waste management systems in the United States," Resources, Conservation & Recycling, Elsevier, vol. 52(7), pages 955-964.
  • Handle: RePEc:eee:recore:v:52:y:2008:i:7:p:955-964
    DOI: 10.1016/j.resconrec.2008.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344908000360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2008.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Hai-Yong & Schoenung, Julie M., 2005. "Electronic waste recycling: A review of U.S. infrastructure and technology options," Resources, Conservation & Recycling, Elsevier, vol. 45(4), pages 368-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xue & Gaustad, Gabrielle & Babbitt, Callie W. & Richa, Kirti, 2014. "Economies of scale for future lithium-ion battery recycling infrastructure," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 53-62.
    2. Andiç, Esen & Yurt, Öznur & Baltacıoğlu, Tunçdan, 2012. "Green supply chains: Efforts and potential applications for the Turkish market," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 50-68.
    3. Kissling, Ramon & Coughlan, Damian & Fitzpatrick, Colin & Boeni, Heinz & Luepschen, Claudia & Andrew, Stefan & Dickenson, John, 2013. "Success factors and barriers in re-use of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 21-31.
    4. Mary Lawhon, 2012. "Relational Power in the Governance of a South African E-Waste Transition," Environment and Planning A, , vol. 44(4), pages 954-971, April.
    5. Mallawarachchi, Harshani & Karunasena, Gayani, 2012. "Electronic and electrical waste management in Sri Lanka: Suggestions for national policy enhancements," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 44-53.
    6. Nnorom, I.C. & Osibanjo, O. & Ogwuegbu, M.O.C., 2011. "Global disposal strategies for waste cathode ray tubes," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 275-290.
    7. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.
    8. Kahhat, Ramzy F. & Williams, Eric D., 2010. "Adoption and disposition of new and used computers in Lima, Peru," Resources, Conservation & Recycling, Elsevier, vol. 54(8), pages 501-505.
    9. Lee, Michael James & Rahimifard, Shahin, 2012. "An air-based automated material recycling system for postconsumer footwear products," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 90-99.
    10. Y. Sarada & S. Sangeetha, 2022. "Coordinating a reverse supply chain with price and warranty dependent random demand under collection uncertainties," Operational Research, Springer, vol. 22(4), pages 4119-4158, September.
    11. Imran, Muhammad & Haydar, Sajjad & Kim, Junbeum & Awan, Muhammad Rizwan & Bhatti, Amanat Ali, 2017. "E-waste flows, resource recovery and improvement of legal framework in Pakistan," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 131-138.
    12. Jang, Yong-Chul & Kim, Mincheol, 2010. "Management of used & end-of-life mobile phones in Korea: A review," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 11-19.
    13. Bouvier, Rachel & Wagner, Travis, 2011. "The influence of collection facility attributes on household collection rates of electronic waste: The case of televisions and computer monitors," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1051-1059.
    14. Saphores, Jean-Daniel M. & Ogunseitan, Oladele A. & Shapiro, Andrew A., 2012. "Willingness to engage in a pro-environmental behavior: An analysis of e-waste recycling based on a national survey of U.S. households," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 49-63.
    15. Abdul Khaliq & Muhammad Akbar Rhamdhani & Geoffrey Brooks & Syed Masood, 2014. "Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective," Resources, MDPI, vol. 3(1), pages 1-28, February.
    16. Borthakur, Anwesha & Govind, Madhav, 2017. "Emerging trends in consumers’ E-waste disposal behaviour and awareness: A worldwide overview with special focus on India," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 102-113.
    17. Achillas, Ch. & Aidonis, D. & Vlachokostas, Ch. & Moussiopoulos, N. & Banias, G. & Triantafillou, D., 2012. "A multi-objective decision-making model to select waste electrical and electronic equipment transportation media," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 76-84.
    18. Yu, Jinglei & Williams, Eric & Ju, Meiting & Shao, Chaofeng, 2010. "Managing e-waste in China: Policies, pilot projects and alternative approaches," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 991-999.
    19. Scruggs, Caroline E. & Nimpuno, Nardono & Moore, Rachel B.B., 2016. "Improving information flow on chemicals in electronic products and E-waste to minimize negative consequences for health and the environment," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 149-164.
    20. Gu, Yifan & Wu, Yufeng & Xu, Ming & Wang, Huaidong & Zuo, Tieyong, 2016. "The stability and profitability of the informal WEEE collector in developing countries: A case study of China," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 18-26.
    21. Rahmani, Mehdi & Nabizadeh, Ramin & Yaghmaeian, Kamyar & Mahvi, Amir Hossein & Yunesian, Massoud, 2014. "Estimation of waste from computers and mobile phones in Iran," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 21-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallawarachchi, Harshani & Karunasena, Gayani, 2012. "Electronic and electrical waste management in Sri Lanka: Suggestions for national policy enhancements," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 44-53.
    2. Katrina N. Burns & Kan Sun & Julius N. Fobil & Richard L. Neitzel, 2016. "Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers," IJERPH, MDPI, vol. 13(1), pages 1-16, January.
    3. Nnorom, I.C. & Osibanjo, O. & Ogwuegbu, M.O.C., 2011. "Global disposal strategies for waste cathode ray tubes," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 275-290.
    4. Rahmani, Mehdi & Nabizadeh, Ramin & Yaghmaeian, Kamyar & Mahvi, Amir Hossein & Yunesian, Massoud, 2014. "Estimation of waste from computers and mobile phones in Iran," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 21-29.
    5. Pérez-Belis, V. & Bovea, M.D. & Gómez, A., 2013. "Waste electric and electronic toys: Management practices and characterisation," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 1-12.
    6. Abdul Khaliq & Muhammad Akbar Rhamdhani & Geoffrey Brooks & Syed Masood, 2014. "Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective," Resources, MDPI, vol. 3(1), pages 1-28, February.
    7. Iakovou, E. & Moussiopoulos, N. & Xanthopoulos, A. & Achillas, Ch. & Michailidis, N. & Chatzipanagioti, M. & Koroneos, C. & Bouzakis, K.-D. & Kikis, V., 2009. "A methodological framework for end-of-life management of electronic products," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 329-339.
    8. Van Eygen, Emile & De Meester, Steven & Tran, Ha Phuong & Dewulf, Jo, 2016. "Resource savings by urban mining: The case of desktop and laptop computers in Belgium," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 53-64.
    9. Khaobang, Chanoknunt & Sarabhorn, Prysathryd & Siripaiboon, Chootrakul & Scala, Fabrizio & Areeprasert, Chinnathan, 2022. "Pilot-scale combined pyrolysis and decoupling biomass gasification for energy and metal recovery from discarded printed circuit board and waste cable," Energy, Elsevier, vol. 245(C).
    10. Borthakur, Anwesha & Govind, Madhav, 2017. "Emerging trends in consumers’ E-waste disposal behaviour and awareness: A worldwide overview with special focus on India," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 102-113.
    11. Alonso Movilla, Natalia & Zwolinski, Peggy & Dewulf, Jo & Mathieux, Fabrice, 2016. "A method for manual disassembly analysis to support the ecodesign of electronic displays," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 42-58.
    12. van der Merwe, Antoinette & Cabernard, Livia & Günther, Isabel, 2023. "Urban mining: The relevance of information, transaction costs and externalities," Ecological Economics, Elsevier, vol. 205(C).
    13. Wang, Xue & Gaustad, Gabrielle & Babbitt, Callie W. & Richa, Kirti, 2014. "Economies of scale for future lithium-ion battery recycling infrastructure," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 53-62.
    14. Nicolae Istudor & Ionel Dumitru & Alina Filip & Alin Stancu & Mihai Ioan Ro?ca & Andrei Canda, 2023. "Integration of Circular Economy Principles in Consumer Behaviour for Electrical and Electronic Equipment," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(62), pages 1-48, February.
    15. Das, A. & Vidyadhar, A. & Mehrotra, S.P., 2009. "A novel flowsheet for the recovery of metal values from waste printed circuit boards," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 464-469.
    16. Lee, Jae-chun & Song, Hyo Teak & Yoo, Jae-Min, 2007. "Present status of the recycling of waste electrical and electronic equipment in Korea," Resources, Conservation & Recycling, Elsevier, vol. 50(4), pages 380-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:52:y:2008:i:7:p:955-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.