IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v117y2017ipbp114-124.html
   My bibliography  Save this article

Sustainability evaluation of recycling in agricultural systems by emergy accounting

Author

Listed:
  • Wang, Xiaolong
  • Li, Zhejin
  • Long, Pan
  • Yan, Lingling
  • Gao, Wangsheng
  • Chen, Yuanquan
  • Sui, Peng

Abstract

Recycling wasted biomass as organic fertilizer has been an important road to develop sustainable agriculture. Emergy evaluation (EME) is a widely used method to evaluate sustainability of agricultural systems. However, the contribution of recycled biomass on emergy efficiency and sustainability of investigated systems cannot be comprehensively and reasonably represented, to some extent, by the currently used forth emergy rule. In this study, therefore, an “emformation” concept is introduced to illustrate that the recycled biomass derived from different agricultural processes only contains the emergy stored in its organic matter. Meanwhile, a formulas is designed to account the energy contribution of recycled biomass for recycling agricultural systems. A case study on wheat-maize double-cropping systems fertilized by crop straw (CS), pig manure (PM), wine residue (WR), biogas residue (BR) and mushroom residue (MR) in the North China Plain is performed to compare with the system only applying mineral fertilizer (CK). Several emergy-based indices, such as unit emergy value (UEV), nonrenewable resource efficiency (NRE), recycle yield ratio (RYR), emergy yield ratio (EYR), emergy loading ratio (ELR) and emergy sustainability index (ESI) are calculated, in which the EYR and ESI are modified to reflect the influence of applying recycled biomass on the sustainability of recycling agricultural systems. Result shows that the UEVs and NREs of the CS, PM, WR, BR and MR are 22.0%–77.3% higher than that of the CK, the RYR of the CS is 31.6% lower than that of the PM, WR, BR and MR, the modified EYRs of the CS, PM, WR, BR and MR increase by 67.6%–81.4% compared to the CK, the ELR are 8.4%–75.4% higher for the PM, WR and MR but 6.7%–29.1% lower for the CS and BR than that of the CK, the modified ESI of the CS, PM, WR, BR and MR increase by 3.5%–136.8% compared to the CK. Generally, the results illustrate that the modified approach contribute to achieving more reasonable evaluation results for agricultural systems involving recycled biomass. The wheat-maize systems fertilized by recycled biomass consume the more emergy and nonrenewable resources to generate the unit product. The recycling agricultural systems show the higher sustainability, in which recycling biogas residue into field as organic fertilizer shows the best recycling benefits.

Suggested Citation

  • Wang, Xiaolong & Li, Zhejin & Long, Pan & Yan, Lingling & Gao, Wangsheng & Chen, Yuanquan & Sui, Peng, 2017. "Sustainability evaluation of recycling in agricultural systems by emergy accounting," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 114-124.
  • Handle: RePEc:eee:recore:v:117:y:2017:i:pb:p:114-124
    DOI: 10.1016/j.resconrec.2016.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916303251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, XiaoHong & Wei, Ye & Li, Min & Deng, ShiHuai & Wu, Jun & Zhang, YanZong & Xiao, Hong, 2014. "Emergy evaluation of an integrated livestock wastewater treatment system," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 95-107.
    2. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    3. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    4. Taskhiri, Mohammad Sadegh & Tan, Raymond R. & Chiu, Anthony S.F., 2011. "Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 730-737.
    5. Amponsah, N.Y. & Le Corre, O. & Lacarriere, B., 2011. "Recycling flows in emergy evaluation: A mathematical paradox?," Ecological Modelling, Elsevier, vol. 222(17), pages 3071-3081.
    6. Amponsah, N.Y. & Lacarrière, B. & Jamali-Zghal, N. & Le Corre, O., 2012. "Impact of building material recycle or reuse on selected emergy ratios," Resources, Conservation & Recycling, Elsevier, vol. 67(C), pages 9-17.
    7. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    8. Puca, Antonio & Carrano, Marco & Liu, Gengyuan & Musella, Dimitri & Ripa, Maddalena & Viglia, Silvio & Ulgiati, Sergio, 2017. "Energy and eMergy assessment of the production and operation of a personal computer," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 124-136.
    9. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    10. Fengjiao Ma & A. Egrinya Eneji & Jintong Liu, 2014. "Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    11. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    12. Giannetti, B.F. & Ogura, Y. & Bonilla, S.H. & Almeida, C.M.V.B., 2011. "Accounting emergy flows to determine the best production model of a coffee plantation," Energy Policy, Elsevier, vol. 39(11), pages 7399-7407.
    13. Giannetti, B.F. & Ogura, Y. & Bonilla, S.H. & Almeida, C.M.V.B., 2011. "Emergy assessment of a coffee farm in Brazilian Cerrado considering in a broad form the environmental services, negative externalities and fair price," Agricultural Systems, Elsevier, vol. 104(9), pages 679-688.
    14. Jaklič, Tina & Juvančič, Luka & Kavčič, Stane & Debeljak, Marko, 2014. "Complementarity of socio-economic and emergy evaluation of agricultural production systems: The case of Slovenian dairy sector," Ecological Economics, Elsevier, vol. 107(C), pages 469-481.
    15. Tilley, David R., 2011. "Dynamic accounting of emergy cycling," Ecological Modelling, Elsevier, vol. 222(20), pages 3734-3742.
    16. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Gao, Wangsheng & Qin, Feng & Zhang, Jiansheng & Wu, Xia, 2014. "Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA," Agricultural Systems, Elsevier, vol. 128(C), pages 66-78.
    17. Gala, Alba Bala & Raugei, Marco & Ripa, Maddalena & Ulgiati, Sergio, 2015. "Dealing with waste products and flows in life cycle assessment and emergy accounting: Methodological overview and synergies," Ecological Modelling, Elsevier, vol. 315(C), pages 69-76.
    18. Wu, Xihui & Wu, Faqi & Tong, Xiaogang & Wu, Jia & Sun, Lu & Peng, Xiaoyu, 2015. "Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: Analysis of the ecological recycle of wastes," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 40-50.
    19. Lazzaretto, Andrea, 2009. "A critical comparison between thermoeconomic and emergy analyses algebra," Energy, Elsevier, vol. 34(12), pages 2196-2205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhan & Liang, Zhengyuan & Cheng, Jiali & Groot, Jeroen C.J. & Zhang, Chaochun & Cong, Wen-Feng & Zhang, Fusuo & van der Werf, Wopke, 2024. "Comparing the sustainability of smallholder and business farms in the North China Plain; a case study in Quzhou," Agricultural Systems, Elsevier, vol. 216(C).
    2. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    3. Zhang, Can & Su, Bo & Beckmann, Michael & Volk, Martin, 2024. "Emergy-based evaluation of ecosystem services: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Tan, Kangming & Li, Yuliang & Chen, Yun & Liu, Fangdan & Ou, Jingmin & Zhang, Yuhan & Wang, Xiaolong, 2022. "Modified framework to reflect contribution of soil storage in emergy synthesis under different agricultural practices at farm level," Ecological Modelling, Elsevier, vol. 465(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    2. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    3. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    4. Jamali-Zghal, N. & Lacarrière, B. & Le Corre, O., 2015. "Metallurgical recycling processes: Sustainability ratios and environmental performance assessment," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 66-75.
    5. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    6. Le Corre, O. & Truffet, L., 2015. "Emergy paths computation from interconnected energy system diagram," Ecological Modelling, Elsevier, vol. 313(C), pages 181-200.
    7. Tan, Kangming & Li, Yuliang & Chen, Yun & Liu, Fangdan & Ou, Jingmin & Zhang, Yuhan & Wang, Xiaolong, 2022. "Modified framework to reflect contribution of soil storage in emergy synthesis under different agricultural practices at farm level," Ecological Modelling, Elsevier, vol. 465(C).
    8. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    9. Lacarrière, Bruno & Deutz, Kévin Ruben & Jamali-Zghal, Nadia & Le Corre, Olivier, 2015. "Emergy assessment of the benefits of closed-loop recycling accounting for material losses," Ecological Modelling, Elsevier, vol. 315(C), pages 77-87.
    10. Le Corre, O. & Truffet, L., 2012. "Exact computation of emergy based on a mathematical reinterpretation of the rules of emergy algebra," Ecological Modelling, Elsevier, vol. 230(C), pages 101-113.
    11. Tamara Fonseca & Wagner C. Valenti & Biagio F. Giannetti & Fernando H. Gonçalves & Feni Agostinho, 2022. "Environmental Accounting of the Yellow-Tail Lambari Aquaculture: Sustainability of Rural Freshwater Pond Systems," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    12. Lyu, Yanfeng & Raugei, Marco & Zhang, Xiaohong & Mellino, Salvatore & Ulgiati, Sergio, 2021. "Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Life Cycle Assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    14. Puca, Antonio & Carrano, Marco & Liu, Gengyuan & Musella, Dimitri & Ripa, Maddalena & Viglia, Silvio & Ulgiati, Sergio, 2017. "Energy and eMergy assessment of the production and operation of a personal computer," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 124-136.
    15. Tilley, David R., 2014. "Exploration of Odum's dynamic emergy accounting rules for suggested refinements," Ecological Modelling, Elsevier, vol. 279(C), pages 36-44.
    16. Agostinho, F. & Oliveira, M.W. & Pulselli, F.M. & Almeida, C.M.V.B. & Giannetti, B.F., 2019. "Emergy accounting as a support for a strategic planning towards a regional sustainable milk production," Agricultural Systems, Elsevier, vol. 176(C).
    17. Giannetti, B.F. & Demétrio, J.F.C. & Bonilla, S.H. & Agostinho, F. & Almeida, C.M.V.B., 2013. "Emergy diagnosis and reflections towards Brazilian sustainable development," Energy Policy, Elsevier, vol. 63(C), pages 1002-1012.
    18. Almeida, C.M.V.B. & Borges, D. & Bonilla, S.H. & Giannetti, B.F., 2010. "Identifying improvements in water management of bus-washing stations in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 821-831.
    19. Zhang, Can & Su, Bo & Beckmann, Michael & Volk, Martin, 2024. "Emergy-based evaluation of ecosystem services: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Xiumei Xu & Chao Feng & Yongshan Du & Qimeng Wang & Gaige Zhang & Yicheng Huang, 2022. "Evaluating the sustainability of a tourism system based on emergy accounting and emergetic ternary diagrams: a case study of the Xinjiang Kanas tourism area," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6731-6787, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:117:y:2017:i:pb:p:114-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.