IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v97y2015icp66-75.html
   My bibliography  Save this article

Metallurgical recycling processes: Sustainability ratios and environmental performance assessment

Author

Listed:
  • Jamali-Zghal, N.
  • Lacarrière, B.
  • Le Corre, O.

Abstract

Recycling is considered as core element of the sustainable development. In reality, however, due to the physical and chemical limits of current recycling technologies, material and quality losses occur that affect the efficiency of recycling. This paper aims to assess the environmental performance of metallurgical recycling, from both a donor and user-side perspective, by using the emergy evaluation combined with exergetic life cycle assessment (ELCA). The developed evaluation model is based on Ulgiati's proposition to erase the memory of the recovered material and to account only for the current recycling cycle. The use of an average transformity is proposed to measure the environmental performance of recycled materials. Contrary to classical transformities, it evaluates the material based on all previous processes that generated the material while avoiding the “double counting”. Finally, three sustainability ratios have been defined to further assess the benefits and limits of consecutive metallurgical recycling processes: the resource efficiency ratio α, the performance ratio β and the eco-design ratio χ. Their functions have been described and clarified with provided examples.

Suggested Citation

  • Jamali-Zghal, N. & Lacarrière, B. & Le Corre, O., 2015. "Metallurgical recycling processes: Sustainability ratios and environmental performance assessment," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 66-75.
  • Handle: RePEc:eee:recore:v:97:y:2015:i:c:p:66-75
    DOI: 10.1016/j.resconrec.2015.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915000415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Raugei, Marco & Rugani, Benedetto & Benetto, Enrico & Ingwersen, Wesley W., 2014. "Integrating emergy into LCA: Potential added value and lingering obstacles," Ecological Modelling, Elsevier, vol. 271(C), pages 4-9.
    3. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    4. Castro, M.B.G. & Remmerswaal, J.A.M. & Brezet, J.C. & Reuter, M.A., 2007. "Exergy losses during recycling and the resource efficiency of product systems," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 219-233.
    5. Ayres, Robert U. & Ayres, Leslie W. & Martinás, Katalin, 1998. "Exergy, waste accounting, and life-cycle analysis," Energy, Elsevier, vol. 23(5), pages 355-363.
    6. Amponsah, N.Y. & Le Corre, O. & Lacarriere, B., 2011. "Recycling flows in emergy evaluation: A mathematical paradox?," Ecological Modelling, Elsevier, vol. 222(17), pages 3071-3081.
    7. Amponsah, N.Y. & Lacarrière, B. & Jamali-Zghal, N. & Le Corre, O., 2012. "Impact of building material recycle or reuse on selected emergy ratios," Resources, Conservation & Recycling, Elsevier, vol. 67(C), pages 9-17.
    8. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    9. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    10. Finnveden, Göran & Östlund, Per, 1997. "Exergies of natural resources in life-cycle assessment and other applications," Energy, Elsevier, vol. 22(9), pages 923-931.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolong & Li, Zhejin & Long, Pan & Yan, Lingling & Gao, Wangsheng & Chen, Yuanquan & Sui, Peng, 2017. "Sustainability evaluation of recycling in agricultural systems by emergy accounting," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 114-124.
    2. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    3. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    4. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    5. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    6. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    7. Lacarrière, Bruno & Deutz, Kévin Ruben & Jamali-Zghal, Nadia & Le Corre, Olivier, 2015. "Emergy assessment of the benefits of closed-loop recycling accounting for material losses," Ecological Modelling, Elsevier, vol. 315(C), pages 77-87.
    8. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    9. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
    10. Gala, Alba Bala & Raugei, Marco & Ripa, Maddalena & Ulgiati, Sergio, 2015. "Dealing with waste products and flows in life cycle assessment and emergy accounting: Methodological overview and synergies," Ecological Modelling, Elsevier, vol. 315(C), pages 69-76.
    11. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    12. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    14. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    15. Almeida, C.M.V.B. & Borges, D. & Bonilla, S.H. & Giannetti, B.F., 2010. "Identifying improvements in water management of bus-washing stations in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 821-831.
    16. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    17. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    18. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "The argument against a reductionist approach for measuring sustainable development performance and the need for methodological pluralism," Accounting forum, Elsevier, vol. 33(3), pages 245-256.
    19. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    20. Mario Martín-Gamboa & Diego Iribarren, 2016. "Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms," Resources, MDPI, vol. 5(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:97:y:2015:i:c:p:66-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.