IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v218y2019icp96-105.html
   My bibliography  Save this article

Design of robust distribution network under demand uncertainty: A case study in the pulp and paper

Author

Listed:
  • Ouhimmou, Mustapha
  • Nourelfath, Mustapha
  • Bouchard, Mathieu
  • Bricha, Naji

Abstract

The design of a supply chain network helps companies in dealing with variability and uncertain evolution of demand over time. An efficient supply chain network may contribute to fulfill the customers’ demands in a quick and least cost manner. Therefore, it is important to solve the problem dealt with in this article concerning the design of the distribution network under demand uncertainty. The problem is to determine which warehouses to open and how much space to rent (outsource) in warehouses owned by third-party logistics providers. This paper presents the development and application of the robust optimization methodology to distribution network design problem under demand uncertainty. The proposed method allows the designer to find a network configuration having a total cost that is robust to typical changes in the geographical distribution of the demand. The Algorithm is an iterative process based on Benders decomposition. At each iteration, the following two steps are performed. In the first step, the global design problem (master problem) is solved to decide on the best use of warehouses according to the information provided by the previous iterations. For a given warehouse configuration and under some restrictions on demand variations, the second step determines the demand that incurred the largest transportation cost, granted that the transportation cost is optimal. These steps are repeated until finding the warehouses configuration that gives the smallest worst-case transportation cost. At each iteration the worst-case transportation cost sub-problem provides new information to the global design problem, such that the latter can improve its robustness. We report numerical results for real size network problems. The main results show that a high level of robustness of the distribution network can be achieved at a relatively low cost.

Suggested Citation

  • Ouhimmou, Mustapha & Nourelfath, Mustapha & Bouchard, Mathieu & Bricha, Naji, 2019. "Design of robust distribution network under demand uncertainty: A case study in the pulp and paper," International Journal of Production Economics, Elsevier, vol. 218(C), pages 96-105.
  • Handle: RePEc:eee:proeco:v:218:y:2019:i:c:p:96-105
    DOI: 10.1016/j.ijpe.2019.04.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527319301550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.04.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Mark S. Daskin & Lawrence V. Snyder & Rosemary T. Berger, 2005. "Facility Location in Supply Chain Design," Springer Books, in: André Langevin & Diane Riopel (ed.), Logistics Systems: Design and Optimization, chapter 0, pages 39-65, Springer.
    4. S Mudchanatongsuk & F Ordóñez & J Liu, 2008. "Robust solutions for network design under transportation cost and demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 652-662, May.
    5. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    6. Aliakbar Hasani & Seyed Hessameddin Zegordi & Ehsan Nikbakhsh, 2015. "Robust closed-loop global supply chain network design under uncertainty: the case of the medical device industry," International Journal of Production Research, Taylor & Francis Journals, vol. 53(5), pages 1596-1624, March.
    7. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    8. M Kazemi Zanjani & M Nourelfath & D Ait-Kadi, 2013. "A scenario decomposition approach for stochastic production planning in sawmills," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(1), pages 48-59, January.
    9. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    10. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    11. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    12. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    13. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    14. Quddus, Md Abdul & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Yu, Fei & Bian, Linkan, 2018. "A two-stage chance-constrained stochastic programming model for a bio-fuel supply chain network," International Journal of Production Economics, Elsevier, vol. 195(C), pages 27-44.
    15. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    16. Hill, James & Galbreth, Michael, 2008. "A heuristic for single-warehouse multiretailer supply chains with all-unit transportation cost discounts," European Journal of Operational Research, Elsevier, vol. 187(2), pages 473-482, June.
    17. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    18. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    19. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing, 2017. "An enhanced robustness approach for managing supply and demand uncertainties," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 620-631.
    20. Haddadsisakht, Ali & Ryan, Sarah M., 2018. "Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax," International Journal of Production Economics, Elsevier, vol. 195(C), pages 118-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tosarkani, Babak Mohamadpour & Amin, Saman Hassanzadeh & Zolfagharinia, Hossein, 2020. "A scenario-based robust possibilistic model for a multi-objective electronic reverse logistics network," International Journal of Production Economics, Elsevier, vol. 224(C).
    2. Nasiri, G. Reza & Deymeh, Hadi & Karimi, Behrooz & Miandoabchi, Elnaz, 2021. "Incorporating sales and marketing considerations into a competitive multi-echelon distribution network design problem with pricing strategy in a stochastic environment," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    3. Gomes, Vanessa de Souza & Monti, Cássio Augusto Ussi & Silva, Carolina Souza Jarochinski e & Gomide, Lucas Rezende, 2021. "Operational harvest planning under forest road maintenance uncertainty," Forest Policy and Economics, Elsevier, vol. 131(C).
    4. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    5. Kulkarni, Onkar & Dahan, Mathieu & Montreuil, Benoit, 2022. "Resilient Hyperconnected Parcel Delivery Network Design Under Disruption Risks," International Journal of Production Economics, Elsevier, vol. 251(C).
    6. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    2. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    3. Alzaman, Chaher & Zhang, Zhi-Hai & Diabat, Ali, 2018. "Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics," International Journal of Production Economics, Elsevier, vol. 203(C), pages 203-215.
    4. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    5. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    6. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    7. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    8. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    9. Blossey, Gregor & Hahn, Gerd J. & Koberstein, Achim, 2022. "Planning pharmaceutical manufacturing networks in the light of uncertain production approval times," International Journal of Production Economics, Elsevier, vol. 244(C).
    10. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    11. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    12. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    13. Yi Liao & Ali Diabat & Chaher Alzaman & Yiqiang Zhang, 2020. "Modeling and heuristics for production time crashing in supply chain network design," Annals of Operations Research, Springer, vol. 288(1), pages 331-361, May.
    14. Huang, Edward & Goetschalckx, Marc, 2014. "Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 508-518.
    15. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    17. Surya Prakash & Sameer Kumar & Gunjan Soni & Vipul Jain & Ajay Pal Singh Rathore, 2020. "Closed-loop supply chain network design and modelling under risks and demand uncertainty: an integrated robust optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 837-864, July.
    18. Roya Soltani & Seyed J Sadjadi, 2014. "Reliability optimization through robust redundancy allocation models with choice of component type under fuzziness," Journal of Risk and Reliability, , vol. 228(5), pages 449-459, October.
    19. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    20. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:218:y:2019:i:c:p:96-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.