IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v64y2013i1p48-59.html
   My bibliography  Save this article

A scenario decomposition approach for stochastic production planning in sawmills

Author

Listed:
  • M Kazemi Zanjani

    (1] Concordia University, Montreal, Canada[2] Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Montreal, Canada)

  • M Nourelfath

    (1] Université Laval, Québec, Canada[2] Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Montreal, Canada)

  • D Ait-Kadi

    (1] Université Laval, Québec, Canada[2] Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Montreal, Canada)

Abstract

This study considers a real world stochastic multi-period, multi-product production planning problem. Motivated by the challenges encountered in sawmill production planning, the proposed model takes into account two important aspects: (i) randomness in yield and in demand; and (ii) set-up constraints. Rather than considering a single source of randomness, or ignoring set-up constraints as is typically the case in the literature, we retain all these characteristics while addressing real life-size instances of the problem. Uncertainties are modelled by a scenario tree in a multi-stage environment. In the case study, the resulting large-scale multi-stage stochastic mixed-integer model cannot be solved by using the mixed-integer solver of a commercial optimization package, such as CPLEX. Moreover, as the production planning model under discussion is a mixed-integer programming model lacking any special structure, the development of decomposition and cutting plane algorithms to obtain good solutions in a reasonable time-frame is not straightforward. We develop a scenario decomposition approach based on the progressive hedging algorithm, which iteratively solves the scenarios separately. CPLEX is then used for solving the sub-problems generated for each scenario. The proposed approach attempts to gradually steer the solutions of the sub-problems towards an implementable solution by adding some penalty terms in the objective function used when solving each scenario. Computational experiments for a real-world large-scale sawmill production planning model show the effectiveness of the proposed solution approach in finding good approximate solutions.

Suggested Citation

  • M Kazemi Zanjani & M Nourelfath & D Ait-Kadi, 2013. "A scenario decomposition approach for stochastic production planning in sawmills," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(1), pages 48-59, January.
  • Handle: RePEc:pal:jorsoc:v:64:y:2013:i:1:p:48-59
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n1/pdf/jors201228a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v64/n1/full/jors201228a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Fang & Xinbao Liu & Panos M. Pardalos & Jianyu Long & Jun Pei & Chao Zuo, 2017. "A stochastic production planning problem in hybrid manufacturing and remanufacturing systems with resource capacity planning," Journal of Global Optimization, Springer, vol. 68(4), pages 851-878, August.
    2. Ouhimmou, Mustapha & Nourelfath, Mustapha & Bouchard, Mathieu & Bricha, Naji, 2019. "Design of robust distribution network under demand uncertainty: A case study in the pulp and paper," International Journal of Production Economics, Elsevier, vol. 218(C), pages 96-105.
    3. Kazemi Zanjani, Masoumeh & Sanei Bajgiran, Omid & Nourelfath, Mustapha, 2016. "A hybrid scenario cluster decomposition algorithm for supply chain tactical planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 466-476.
    4. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:64:y:2013:i:1:p:48-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.