IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v288y2020i1d10.1007_s10479-020-03538-3.html
   My bibliography  Save this article

Modeling and heuristics for production time crashing in supply chain network design

Author

Listed:
  • Yi Liao

    (Southwestern University of Finance and Economics)

  • Ali Diabat

    (New York University Abu Dhabi
    Tandon School of Engineering, New York University)

  • Chaher Alzaman

    (Concordia University)

  • Yiqiang Zhang

    (Shanghai Lixin University of Accounting and Finance)

Abstract

Supply chains with shorter lead times can bring their constituents cost reductions, flexibility, and speed. Since manufacturing is a prominent operation within the supply chain, the reduction of its time duration can prove important in reducing the overall supply chain’s lead-time. Some works in the area of supply chain network design (SCND) have looked at the crashing of supply chain’s lead-time. However, the literature lacks works that explicitly model a crashing cost in SCND. The work formulates a cost model that integrates production, crashing, inventory, transportation, and plant selection. Given the complexity of these elements, the model emerging is a nonlinear and binary in both the objective function and the constraints. The paper introduces a gradient search method to solve the model coupled with efficient search heuristics. The work presents seven search heuristics along with variants to solve the difficult problem at hand. Further, the work looks at different parameters that affect the crashing cost, presents the cost avoidances that can result from crashing, and discusses the operational opportunities to be reaped.

Suggested Citation

  • Yi Liao & Ali Diabat & Chaher Alzaman & Yiqiang Zhang, 2020. "Modeling and heuristics for production time crashing in supply chain network design," Annals of Operations Research, Springer, vol. 288(1), pages 331-361, May.
  • Handle: RePEc:spr:annopr:v:288:y:2020:i:1:d:10.1007_s10479-020-03538-3
    DOI: 10.1007/s10479-020-03538-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03538-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03538-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian, Ming & Fang, Xin & Jin, Liu-qian & Rajapov, Azamat, 2015. "The impact of lead time compression on demand forecasting risk and production cost: A newsvendor model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 61-72.
    2. Jayaraman, Vaidyanathan & Ross, Anthony, 2003. "A simulated annealing methodology to distribution network design and management," European Journal of Operational Research, Elsevier, vol. 144(3), pages 629-645, February.
    3. Aliakbar Hasani & Seyed Hessameddin Zegordi & Ehsan Nikbakhsh, 2015. "Robust closed-loop global supply chain network design under uncertainty: the case of the medical device industry," International Journal of Production Research, Taylor & Francis Journals, vol. 53(5), pages 1596-1624, March.
    4. Cakravastia, Andi & Toha, Isa S. & Nakamura, Nobuto, 2002. "A two-stage model for the design of supply chain networks," International Journal of Production Economics, Elsevier, vol. 80(3), pages 231-248, December.
    5. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    6. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    7. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    8. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    9. Pan, Feng & Nagi, Rakesh, 2013. "Multi-echelon supply chain network design in agile manufacturing," Omega, Elsevier, vol. 41(6), pages 969-983.
    10. Sachin Kumar Mangla & Pradeep Kumar & Mukesh Kumar Barua, 2016. "An integrated methodology of FTA and fuzzy AHP for risk assessment in green supply chain," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 25(1), pages 77-99.
    11. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "Tactical supply chain planning models with inherent flexibility: definition and review," Annals of Operations Research, Springer, vol. 244(2), pages 407-427, September.
    12. Vahdani, Behnam & Mohammadi, M., 2015. "A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 67-87.
    13. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    14. Beamon, Benita M., 1998. "Supply chain design and analysis:: Models and methods," International Journal of Production Economics, Elsevier, vol. 55(3), pages 281-294, August.
    15. Konstantinos Petridis, 2015. "Optimal design of multi-echelon supply chain networks under normally distributed demand," Annals of Operations Research, Springer, vol. 227(1), pages 63-91, April.
    16. Katayama, Kengo & Narihisa, Hiroyuki, 2001. "Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem," European Journal of Operational Research, Elsevier, vol. 134(1), pages 103-119, October.
    17. Hoque, Mohammad A. & Goyal, Suresh K., 2006. "A heuristic solution procedure for an integrated inventory system under controllable lead-time with equal or unequal sized batch shipments between a vendor and a buyer," International Journal of Production Economics, Elsevier, vol. 102(2), pages 217-225, August.
    18. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    19. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    20. Kamil J. Mizgier, 2017. "Global sensitivity analysis and aggregation of risk in multi-product supply chain networks," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 130-144, January.
    21. Martí, Joana M. Comas & Tancrez, Jean-Sébastien & Seifert, Ralf W., 2015. "Carbon footprint and responsiveness trade-offs in supply chain network design," International Journal of Production Economics, Elsevier, vol. 166(C), pages 129-142.
    22. Diaby, Moustapha & Cruz, Jose M. & Nsakanda, Aaron L., 2013. "Shortening cycle times in multi-product, capacitated production environments through quality level improvements and setup reduction," European Journal of Operational Research, Elsevier, vol. 228(3), pages 526-535.
    23. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    24. Alzaman, Chaher & Zhang, Zhi-Hai & Diabat, Ali, 2018. "Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics," International Journal of Production Economics, Elsevier, vol. 203(C), pages 203-215.
    25. Diabat, Ali & Al-Salem, Mohammed, 2015. "An integrated supply chain problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 330-338.
    26. Bruce C. Arntzen & Gerald G. Brown & Terry P. Harrison & Linda L. Trafton, 1995. "Global Supply Chain Management at Digital Equipment Corporation," Interfaces, INFORMS, vol. 25(1), pages 69-93, February.
    27. Badri, Hossein & Fatemi Ghomi, S.M.T. & Hejazi, Taha-Hossein, 2017. "A two-stage stochastic programming approach for value-based closed-loop supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 1-17.
    28. Rezapour, Shabnam & Farahani, Reza Zanjirani & Pourakbar, Morteza, 2017. "Resilient supply chain network design under competition: A case study," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1017-1035.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhong Hou & Fan Wang & Zhitong Chen & Victor Shi, 2020. "Coordination of a Dual-Channel Pharmaceutical Supply Chain Based on the Susceptible-Infected-Susceptible Epidemic Model," IJERPH, MDPI, vol. 17(9), pages 1-16, May.
    2. Zhang, Peng & Xu, Xiaofeng & Shi, Victor & Zhu, Jing, 2020. "Simultaneous inventory competition and transshipment between retailers," International Journal of Production Economics, Elsevier, vol. 230(C).
    3. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alzaman, Chaher & Zhang, Zhi-Hai & Diabat, Ali, 2018. "Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics," International Journal of Production Economics, Elsevier, vol. 203(C), pages 203-215.
    2. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    3. Blossey, Gregor & Hahn, Gerd J. & Koberstein, Achim, 2022. "Planning pharmaceutical manufacturing networks in the light of uncertain production approval times," International Journal of Production Economics, Elsevier, vol. 244(C).
    4. Holzapfel, Andreas & Potoczki, Tobias & Kuhn, Heinrich, 2023. "Designing the breadth and depth of distribution networks in the retail trade," International Journal of Production Economics, Elsevier, vol. 257(C).
    5. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    6. Ouhimmou, Mustapha & Nourelfath, Mustapha & Bouchard, Mathieu & Bricha, Naji, 2019. "Design of robust distribution network under demand uncertainty: A case study in the pulp and paper," International Journal of Production Economics, Elsevier, vol. 218(C), pages 96-105.
    7. Samir Elhedhli & Jean-Louis Goffin, 2005. "Efficient Production-Distribution System Design," Management Science, INFORMS, vol. 51(7), pages 1151-1164, July.
    8. Alikhani, Reza & Ranjbar, Amirhossein & Jamali, Amir & Torabi, S. Ali & Zobel, Christopher W., 2023. "Towards increasing synergistic effects of resilience strategies in supply chain network design," Omega, Elsevier, vol. 116(C).
    9. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    10. Mingqiang Yin & Min Huang & Xiaohu Qian & Dazhi Wang & Xingwei Wang & Loo Hay Lee, 2023. "Fourth-party logistics network design with service time constraint under stochastic demand," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1203-1227, March.
    11. Ozden Tozanli & Gazi Murat Duman & Elif Kongar & Surendra M. Gupta, 2017. "Environmentally Concerned Logistics Operations in Fuzzy Environment: A Literature Survey," Logistics, MDPI, vol. 1(1), pages 1-42, June.
    12. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    13. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    14. Fandel, G. & Stammen, M., 2004. "A general model for extended strategic supply chain management with emphasis on product life cycles including development and recycling," International Journal of Production Economics, Elsevier, vol. 89(3), pages 293-308, June.
    15. Attari, Mahdi Yousefi Nejad & Torkayesh, Ali Ebadi, 2018. "Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of Iranian mine industry," Operations Research Perspectives, Elsevier, vol. 5(C), pages 371-382.
    16. Muhammad Imran & Muhammad Salman Habib & Amjad Hussain & Naveed Ahmed & Abdulrahman M. Al-Ahmari, 2020. "Inventory Routing Problem in Supply Chain of Perishable Products under Cost Uncertainty," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
    17. Zhang, Abraham & Luo, Hao & Huang, George Q., 2013. "A bi-objective model for supply chain design of dispersed manufacturing in China," International Journal of Production Economics, Elsevier, vol. 146(1), pages 48-58.
    18. Tiwari, M.K. & Raghavendra, N. & Agrawal, Shubham & Goyal, S.K., 2010. "A Hybrid Taguchi-Immune approach to optimize an integrated supply chain design problem with multiple shipping," European Journal of Operational Research, Elsevier, vol. 203(1), pages 95-106, May.
    19. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    20. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:288:y:2020:i:1:d:10.1007_s10479-020-03538-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.