IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v157y2014icp220-237.html
   My bibliography  Save this article

More grip on inventory control through improved forecasting: A comparative study at three companies

Author

Listed:
  • van Wingerden, E.
  • Basten, R.J.I.
  • Dekker, R.
  • Rustenburg, W.D.

Abstract

Inventory control for parts with infrequent demands is difficult since forecasting their demand is problematic. Traditional forecasting methods, such as moving average and single exponential smoothing, are known not to suffice since they do not cope well with periods with zero demands. Croston type methods and bootstrapping methods are more promising. We propose a new bootstrapping method, which we term empirical plus. The added value of this method lies in the fact that it explicitly takes into account that besides the demand, also the supply lead time is stochastic. We compare its performance with a number of methods from all three above-mentioned categories. Opposite to what is done in most comparative studies, we do not focus on performance metrics that are related directly to the forecasting results (e.g., mean squared error), but we focus on the resulting inventory control policy (achieved fill rate and holding costs). We use in our study large data sets from three companies, which we make publicly available. We find that our empirical plus method outperforms the other methods when the average inter-demand interval is large and the squared coefficient of variation of the demand size is small. This class of parts often consists of the expensive parts, for which forecasting is both difficult, because of the infrequent demands, and important, because of the price. The Syntetos Boylan approximation performs best on the other classes of parts. These findings may be used in practice to use the right forecasting method for each type of part, thus achieving more cost-effective spare parts inventory control.

Suggested Citation

  • van Wingerden, E. & Basten, R.J.I. & Dekker, R. & Rustenburg, W.D., 2014. "More grip on inventory control through improved forecasting: A comparative study at three companies," International Journal of Production Economics, Elsevier, vol. 157(C), pages 220-237.
  • Handle: RePEc:eee:proeco:v:157:y:2014:i:c:p:220-237
    DOI: 10.1016/j.ijpe.2014.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731400276X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A A Syntetos & J E Boylan & J D Croston, 2005. "On the categorization of demand patterns," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 495-503, May.
    2. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
    3. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    4. Willemain, Thomas R. & Smart, Charles N. & Schwarz, Henry F., 2004. "A new approach to forecasting intermittent demand for service parts inventories," International Journal of Forecasting, Elsevier, vol. 20(3), pages 375-387.
    5. Dekker, Rommert & Pinçe, Çerağ & Zuidwijk, Rob & Jalil, Muhammad Naiman, 2013. "On the use of installed base information for spare parts logistics: A review of ideas and industry practice," International Journal of Production Economics, Elsevier, vol. 143(2), pages 536-545.
    6. Zhou, Chenxi & Viswanathan, S., 2011. "Comparison of a new bootstrapping method with parametric approaches for safety stock determination in service parts inventory systems," International Journal of Production Economics, Elsevier, vol. 133(1), pages 481-485, September.
    7. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    8. Kennedy, W. J. & Wayne Patterson, J. & Fredendall, Lawrence D., 2002. "An overview of recent literature on spare parts inventories," International Journal of Production Economics, Elsevier, vol. 76(2), pages 201-215, March.
    9. Z S Hua & B Zhang & J Yang & D S Tan, 2007. "A new approach of forecasting intermittent demand for spare parts inventories in the process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 52-61, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Weina & Hekimoğlu, Mustafa & Dekker, Rommert, 2023. "Admission control for a capacitated supply system with real-time replenishment information," International Journal of Production Economics, Elsevier, vol. 266(C).
    2. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    3. Dudu Guo & Pengbin Duan & Zhen Yang & Xiaojiang Zhang & Yinuo Su, 2024. "Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN-BiLSTM)-Attention-Based Prediction of the Amount of Silica Powder Moving in and out of a Warehouse," Energies, MDPI, vol. 17(15), pages 1-22, July.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Fabian Taigel & Anselme K. Tueno & Richard Pibernik, 2018. "Privacy-preserving condition-based forecasting using machine learning," Journal of Business Economics, Springer, vol. 88(5), pages 563-592, July.
    7. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    8. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    9. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    2. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    3. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    4. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    5. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    8. G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
    9. Rego, José Roberto do & Mesquita, Marco Aurélio de, 2015. "Demand forecasting and inventory control: A simulation study on automotive spare parts," International Journal of Production Economics, Elsevier, vol. 161(C), pages 1-16.
    10. Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
    11. Sinan Apak, 2015. "A Bayesian Approach Proposal For Inventory Cost and Demand Forecasting," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 3(2), pages 41-48, December.
    12. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    13. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
    14. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    15. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
    16. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    17. Hasni, M. & Babai, M.Z. & Aguir, M.S. & Jemai, Z., 2019. "An investigation on bootstrapping forecasting methods for intermittent demands," International Journal of Production Economics, Elsevier, vol. 209(C), pages 20-29.
    18. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    19. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    20. Tian, Xin & Wang, Haoqing & E, Erjiang, 2021. "Forecasting intermittent demand for inventory management by retailers: A new approach," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:157:y:2014:i:c:p:220-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.