IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v654y2024ics0378437124006587.html
   My bibliography  Save this article

Elucidation of characteristics of networks where every node has its own lifetime

Author

Listed:
  • Ikeda, Nobutoshi

Abstract

Growth is regarded as an important mechanism for explaining the structures of real networks. However, when the increase in the number of nodes is suppressed owing to their lifetime, the growth property alone is not sufficient to explain even fundamental network properties, such as the scale-free property. In this paper, we propose a network model that considers the lifetime of nodes and the excess addition of local internal links as a mechanism that supports network structures. By investigating the model network, we aimed to elucidate the network characteristics supported by local interactions between nodes via their common neighbors even when the rates of node addition and deletion were balanced. We found that the stationary state of the number of nodes is characterized by a scale-free property with the power-law exponent γ≃1 and localization of the peaks at l=2 in the distance distributions of neighboring nodes (DDN) as the node degree k increases. The specific behavior of the DDN explains the very slow decrease in the clustering strength C(k) with k compared with the normal behavior C(k)∼k−1 and the accelerated growth of the neighborhood graph of each node. Moreover, we showed that some real networks share local structures similar to those of the model network. These findings suggest that the same mechanism as that of the proposed model plays an essential role in supporting the local structures of some real networks.

Suggested Citation

  • Ikeda, Nobutoshi, 2024. "Elucidation of characteristics of networks where every node has its own lifetime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
  • Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006587
    DOI: 10.1016/j.physa.2024.130149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006587
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ikeda, Nobutoshi, 2015. "Effects of triad formations stimulated by intermediaries on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 897-908.
    2. Deng, Ke & Zhao, Heping & Li, Dejun, 2007. "Effect of node deleting on network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 714-726.
    3. H. Bauke & C. Moore & J. Rouquier & D. Sherrington, 2011. "Topological phase transition in a network model with preferential attachment and node removal," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 83(4), pages 519-524, October.
    4. Sousa, A.O., 2005. "Consensus formation on a triad scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 701-710.
    5. Ikeda, Nobutoshi, 2021. "Stratified structure of fractal scale-free networks generated by local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Ikeda, Nobutoshi, 2017. "Topology of growing networks accelerated by intermediary process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 378-393.
    7. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    8. M. Ludwig & P. Abell, 2007. "An evolutionary model of social networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(1), pages 97-105, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikeda, Nobutoshi, 2019. "Growth model for fractal scale-free networks generated by a random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 424-434.
    2. Ikeda, Nobutoshi, 2021. "Stratified structure of fractal scale-free networks generated by local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Rasul Kochkarov & Azret Kochkarov, 2022. "Introduction to the Class of Prefractal Graphs," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    4. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    5. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    6. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    7. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    8. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    9. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    10. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    11. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    12. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    13. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    14. Huang, Liang & Zheng, Yu, 2023. "Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    16. Ortega, José Luis & Aguillo, Isidro F., 2013. "Institutional and country collaboration in an online service of scientific profiles: Google Scholar Citations," Journal of Informetrics, Elsevier, vol. 7(2), pages 394-403.
    17. Ma, Fei & Ouyang, Jinzhi & Shi, Haobin & Pan, Wei & Wang, Ping, 2024. "Type-II Apollonian network: More robust and more efficient Apollonian network," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    18. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    20. Lazaros K Gallos & Fabricio Q Potiguar & José S Andrade Jr & Hernan A Makse, 2013. "IMDB Network Revisited: Unveiling Fractal and Modular Properties from a Typical Small-World Network," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.