IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10714-d900062.html
   My bibliography  Save this article

A Novel Safety Assessment Framework for Pavement Friction Evolution Due to Traffic on Horizontal Curves

Author

Listed:
  • Guilong Xu

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Jinliang Xu

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Chao Gao

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Rishuang Sun

    (Shandong Transportation Planning and Design Institute Group Co., Ltd., Jinan 250061, China)

  • Huagang Shan

    (Shaoxing Transportation Investment Group Co., Ltd., Shaoxing 312000, China)

  • Yongji Ma

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Jinsong Ran

    (School of Highway, Chang’an University, Xi’an 710064, China)

Abstract

The friction coefficient is one of the dominant parameters affecting vehicle driving stability on horizontal curves. However, there is no comprehensive framework to assess the traffic safety on the horizontal curve with the evolution of the friction coefficient caused by the traffic flow. In light of this, this paper developed an integrated risk-assessment framework to evaluate the safety on the horizontal curve with the friction coefficient evolving under different traffic characteristics. The speed distribution on the horizontal curve of the freeway is obtained through field experiments that serve as the basic parameters of the model. A new multi-vehicle risk index (MRI) is introduced to assess the traffic safety risk for the horizontal curve by coupling the reliability theory and negative binomial. Three traffic characteristics are considered in the analysis: cumulative traffic volume (CTV), annual average daily traffic (AADT), and average daily traffic of heavy goods vehicles (AADT HGV ). The results show that the AADT and AADT HGV have a considerable impact on the road risk level. When the truck traffic volume is less than 1000 veh/d, the risk of horizontal curves changes less as road operational time goes. The research results can provide a reference for the road maintenance department to determine the timing of road maintenance.

Suggested Citation

  • Guilong Xu & Jinliang Xu & Chao Gao & Rishuang Sun & Huagang Shan & Yongji Ma & Jinsong Ran, 2022. "A Novel Safety Assessment Framework for Pavement Friction Evolution Due to Traffic on Horizontal Curves," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10714-:d:900062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Khondoker Billah & Qasim Adegbite & Hatim O. Sharif & Samer Dessouky & Lauren Simcic, 2021. "Analysis of Intersection Traffic Safety in the City of San Antonio, 2013–2017," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    4. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    5. Bae, Bumjoon & Seo, Changbeom, 2022. "Do public-private partnerships help improve road safety? Finding empirical evidence using panel data models," Transport Policy, Elsevier, vol. 126(C), pages 336-342.
    6. Svetlana BAČKALIĆ & Dragan JOVANOVIĆ & Todor BAČKALIĆ & Boško MATOVIĆ & Miloš PLJAKIĆ, 2019. "The Application Of Reliability Reallocation Model In Traffic Safety Analysis On Rural Roads," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(1), pages 115-125, April.
    7. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    9. Renfei Wu & Xunjia Zheng & Yongneng Xu & Wei Wu & Guopeng Li & Qing Xu & Zhuming Nie, 2019. "Modified Driving Safety Field Based on Trajectory Prediction Model for Pedestrian–Vehicle Collision," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    10. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    11. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    12. Dereli, Mehmet Ali & Erdogan, Saffet, 2017. "A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 106-117.
    13. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    14. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    15. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    16. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    17. Petr Halámek & Radka Matuszková & Michal Radimský, 2021. "Modernisation of Regional Roads Evaluated Using Ex-Post CBA," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    18. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    19. Darren Shannon & Grigorios Fountas, 2022. "Amending the Heston Stochastic Volatility Model to Forecast Local Motor Vehicle Crash Rates: A Case Study of Washington, D.C," Papers 2203.01729, arXiv.org.
    20. Lee, Jaeyoung & Abdel-Aty, Mohamed & Jiang, Ximiao, 2014. "Development of zone system for macro-level traffic safety analysis," Journal of Transport Geography, Elsevier, vol. 38(C), pages 13-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10714-:d:900062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.