IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v484y2017icp91-103.html
   My bibliography  Save this article

Mittag-Leffler noise induced stochastic resonance in a generalized Langevin equation with random inherent frequency

Author

Listed:
  • He, Guitian
  • Guo, Dali
  • Tian, Yan
  • Li, Tiejun
  • Luo, Maokang

Abstract

The generalized stochastic resonance (GSR) and the bona fide stochastic resonance (SR) in a generalized Langevin equation driven by a periodic signal, multiplicative noise and Mittag-Leffler noise are extensively investigated. The expression of the frequency spectrum of the Mittag-Leffler noise is studied. Using the Shapiro–Loginov formula and Laplace transformation technique, the exact expressions of the output amplitude gain and the signal-to-noise ratio are obtained. The simulation results turn out that the output amplitude gain and the signal-to-noise ratio are non-monotonic functions of the characteristics of noise parameters and system parameters. Especially, the influence of the memory exponent and memory time of Mittag-Leffler noise could induce the GSR phenomenon. The influence of the driving frequency could induce the bona fide stochastic resonance. It is found that the system with fractional memory exponent could be more easily induced SR phenomenon than the system with integer memory exponent.

Suggested Citation

  • He, Guitian & Guo, Dali & Tian, Yan & Li, Tiejun & Luo, Maokang, 2017. "Mittag-Leffler noise induced stochastic resonance in a generalized Langevin equation with random inherent frequency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 91-103.
  • Handle: RePEc:eee:phsmap:v:484:y:2017:i:c:p:91-103
    DOI: 10.1016/j.physa.2017.04.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304636
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ruoqi & Meng, Lin & Yu, Lei & Shi, Sihong & Wang, Huiqi, 2024. "Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Hollerbach, Rainer & Kim, Eun-jin & Mahi, Yanis, 2019. "Information length as a new diagnostic in the periodically modulated double-well model of stochastic resonance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1313-1322.
    3. Tian, Yan & He, Guitian & Liu, Zhibin & Zhong, Linfeng & Yang, Xinping & Stanley, H. Eugene & Tu, Zhe, 2021. "The impact of memory effect on resonance behavior in a fractional oscillator with small time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    4. Lini Qiu & Guitian He & Yun Peng & Huijun Lv & Yujie Tang, 2023. "Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:484:y:2017:i:c:p:91-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.