IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v154y2022ics0960077921009954.html
   My bibliography  Save this article

Collective resonant behaviors in two coupled fluctuating-mass oscillators with tempered Mittag-Leffler memory kernel

Author

Listed:
  • Lin, Lifeng
  • He, Minyue
  • Wang, Huiqi

Abstract

In this study, we propose the coupled fluctuating-mass oscillators with a tempered Mittag-Leffler (M-L) memory kernel, and investigate the collective resonant behaviors. Using the stochastic average method, we acquire the analytical expression of steady-state output amplitude. Based on numerical results, we further study the dependence on various system parameters in detail, and find that coupling strength, memory exponent and memory time exert different effects on the non-monotonic behaviors. We also observe that stochastic resonance (SR) in the wide sense occurs in the coupled system. These results can provide more extensive support for manipulating the collective behaviors in the potential applications.

Suggested Citation

  • Lin, Lifeng & He, Minyue & Wang, Huiqi, 2022. "Collective resonant behaviors in two coupled fluctuating-mass oscillators with tempered Mittag-Leffler memory kernel," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009954
    DOI: 10.1016/j.chaos.2021.111641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Kumar & N. S. Upadhye & A. Wyłomańska & J. Gajda, 2019. "Tempered Mittag-Leffler Lévy processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(2), pages 396-411, January.
    2. Guo, Feng & Zhu, Cheng-Yin & Cheng, Xiao-Feng & Li, Heng, 2016. "Stochastic resonance in a fractional harmonic oscillator subject to random mass and signal-modulated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 86-91.
    3. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    4. Shapiro, V.E. & Loginov, V.M., 1978. "“Formulae of differentiation” and their use for solving stochastic equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 91(3), pages 563-574.
    5. Shi, Peiming & Xia, Haifeng & Han, Dongying & Fu, Rongrong & Yuan, Danzhen, 2018. "Stochastic resonance in a time polo-delayed asymmetry bistable system driven by multiplicative white noise and additive color noise," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 8-14.
    6. Gitterman, M., 2005. "Classical harmonic oscillator with multiplicative noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 309-334.
    7. Lin, Lifeng & Wang, Huiqi & Ma, Hong, 2019. "Directed transport properties of double-headed molecular motors with balanced cargo," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 270-279.
    8. Tian, Yan & Zhong, Lin-Feng & He, Gui-Tian & Yu, Tao & Luo, Mao-Kang & Stanley, H. Eugene, 2018. "The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 845-856.
    9. You, Pinlong & Lin, Lifeng & Wang, Huiqi, 2020. "Cooperative mechanism of generalized stochastic resonance in a time-delayed fractional oscillator with random fluctuations on both mass and damping," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Lifeng & Lin, Tianzhen & Zhang, Ruoqi & Wang, Huiqi, 2023. "Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Zhang, Ruoqi & Meng, Lin & Yu, Lei & Shi, Sihong & Wang, Huiqi, 2024. "Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Lifeng & Lin, Tianzhen & Zhang, Ruoqi & Wang, Huiqi, 2023. "Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. He, Lifang & Wu, Xia & Zhang, Gang, 2020. "Stochastic resonance in coupled fractional-order linear harmonic oscillators with damping fluctuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Vishwamittar, & Batra, Priyanka & Chopra, Ribhu, 2021. "Stochastic resonance in two coupled fractional oscillators with potential and coupling parameters subjected to quadratic asymmetric dichotomous noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Tian, Yan & Yu, Tao & He, Gui-Tian & Zhong, Lin-Feng & Stanley, H. Eugene, 2020. "The resonance behavior in the fractional harmonic oscillator with time delay and fluctuating mass," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. You, Pinlong & Lin, Lifeng & Wang, Huiqi, 2020. "Cooperative mechanism of generalized stochastic resonance in a time-delayed fractional oscillator with random fluctuations on both mass and damping," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Chen, Xi & Luo, Maokang & Zhong, Yangfan & Zhang, Lu, 2022. "Collective dynamic behaviors of a general adjacent coupled chain in both unconfined and confined spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Tian, Yan & He, Guitian & Liu, Zhibin & Zhong, Linfeng & Yang, Xinping & Stanley, H. Eugene & Tu, Zhe, 2021. "The impact of memory effect on resonance behavior in a fractional oscillator with small time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    8. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    12. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    13. Alsuwian, Turki & Kousar, Farhana & Rasheed, Umbreen & Imran, Muhammad & Hussain, Fayyaz & Arif Khalil, R.M. & Algadi, Hassan & Batool, Najaf & Khera, Ejaz Ahmad & Kiran, Saira & Ashiq, Muhammad Naeem, 2021. "First principles investigation of physically conductive bridge filament formation of aluminum doped perovskite materials for neuromorphic memristive applications," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    15. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    16. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    17. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    19. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    20. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.