IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v636y2024ics0378437124000451.html
   My bibliography  Save this article

Coordinating last-train timetabling with app-based ride-hailing service under uncertainty

Author

Listed:
  • Ning, Jia
  • Xing, Xinjie
  • Wang, Yadong
  • Yao, Yu
  • Kang, Liujiang
  • Peng, Qiyuan

Abstract

Since urban rail transit (URT) service is normally not running on 24-hour operation in most cities, last-train timetabling is a prominent problem and challenges URT managers constantly. The rise of app-based ride-hailing (ARH) service opens up new opportunities and challenges for last-train operators to better serve late-night passengers. Specifically, when passengers cannot reach their destinations only through URT services during the last-train operation period, passengers could make good use of feasible train-to-train transfers to reach stations closer to their destinations, and transfer to flexible ARH services to reach their final destinations. However, uncertain road conditions and varying passenger travel preferences complicate the coordination of URT services with ARH services. By considering different passengers’ traveling preferences, various travel path choices, and uncertain ARH travel times, we formulate a two-stage mixed-integer stochastic optimization model to achieve an optimal last-train timetable design for getting more passengers to their destinations in a cost-effective and efficient way. In addition, we propose a genetic algorithm-based solution strategy which outperforms commercial solvers with its computational performance and has its practicability assured. Through our numerical experiments, we reveal insights about how different customers’ preferences and cost components affect the optimal results and provide operational suggestions accordingly for achieving better timetable performance.

Suggested Citation

  • Ning, Jia & Xing, Xinjie & Wang, Yadong & Yao, Yu & Kang, Liujiang & Peng, Qiyuan, 2024. "Coordinating last-train timetabling with app-based ride-hailing service under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
  • Handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000451
    DOI: 10.1016/j.physa.2024.129537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000451
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Eui-Jin & Kim, Youngseo & Jang, Sunghoon & Kim, Dong-Kyu, 2021. "Tourists’ preference on the combination of travel modes under Mobility-as-a-Service environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 236-255.
    2. Zeng, Junwei & Qian, Yongsheng & Li, Jiao & Zhang, Yongzhi & Xu, Dejie, 2023. "Congestion and energy consumption of heterogeneous traffic flow mixed with intelligent connected vehicles and platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    4. Kang, Liujiang & Meng, Qiang, 2017. "Two-phase decomposition method for the last train departure time choice in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 568-582.
    5. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    6. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    7. Shuo Yang & Kai Yang & Lixing Yang & Ziyou Gao, 2018. "MILP formulations and a TS algorithm for reliable last train timetabling with uncertain transfer flows," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(8), pages 1318-1334, August.
    8. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    9. Nie, Wei & Li, Hao & Xiao, Na & Yang, Hao & Jiang, Zhishu & Buhigiro, Nsabimana, 2021. "Modeling and solving the last-shift period train scheduling problem in subway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    10. Guo, Xin & Wu, Jianjun & Sun, Huijun & Yang, Xin & Jin, Jian Gang & Wang, David Z.W., 2020. "Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 463-490.
    11. Dong, Jing-Xin & Lee, Chung-Yee & Song, Dong-Ping, 2015. "Joint service capacity planning and dynamic container routing in shipping network with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 404-421.
    12. Zhou, Yu & Wang, Yun & Yang, Hai & Yan, Xuedong, 2019. "Last train scheduling for maximizing passenger destination reachability in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 79-95.
    13. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    14. Junwei Zeng & Yongsheng Qian & Fan Yin & Leipeng Zhu & Dejie Xu, 2022. "A multi-value cellular automata model for multi-lane traffic flow under lagrange coordinate," Computational and Mathematical Organization Theory, Springer, vol. 28(2), pages 178-192, June.
    15. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    16. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Wang, Bo, 2015. "A practical model for last train rescheduling with train delay in urban railway transit networks," Omega, Elsevier, vol. 50(C), pages 29-42.
    17. Sihui Long & Lingyun Meng & Jianrui Miao & Xin Hong & Francesco Corman, 2020. "Synchronizing Last Trains of Urban Rail Transit System to Better Serve Passengers from Late Night Trains of High-Speed Railway Lines," Networks and Spatial Economics, Springer, vol. 20(2), pages 599-633, June.
    18. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    4. Zhang, Di & Gao, Yuan & Yang, Lixing & Cui, Lixin, 2024. "Timetable synchronization of the last several trains at night in an urban rail transit network," European Journal of Operational Research, Elsevier, vol. 313(2), pages 494-512.
    5. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    6. Zhou, Yu & Wang, Yun & Yang, Hai & Yan, Xuedong, 2019. "Last train scheduling for maximizing passenger destination reachability in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 79-95.
    7. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    8. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    9. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    10. Nie, Wei & Li, Hao & Xiao, Na & Yang, Hao & Jiang, Zhishu & Buhigiro, Nsabimana, 2021. "Modeling and solving the last-shift period train scheduling problem in subway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    11. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    12. Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
    13. Wanqi Wang & Yun Bao & Sihui Long, 2022. "Rescheduling Urban Rail Transit Trains to Serve Passengers from Uncertain Delayed High-Speed Railway Trains," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    14. Yan, Baicheng & Jin, Jian Gang & Zhu, Xiaoning & Lee, Der-Horng & Wang, Li & Wang, Hua, 2020. "Integrated planning of train schedule template and container transshipment operation in seaport railway terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Jian Li & Lu Zhang & Bu Liu & Ningning Shi & Liang Li & Haodong Yin, 2023. "Travel-Energy-Based Timetable Optimization in Urban Subway Systems," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    16. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    17. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    18. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    19. Kang, Liujiang & Meng, Qiang, 2017. "Two-phase decomposition method for the last train departure time choice in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 568-582.
    20. Chu, James C. & Korsesthakarn, Kanticha & Hsu, Yu-Ting & Wu, Hua-Yen, 2019. "Models and a solution algorithm for planning transfer synchronization of bus timetables," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 247-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.