IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v190y2024ics0191261524002182.html
   My bibliography  Save this article

Urban rail train timetabling for the end-of-service period with passenger accessibility and operation cost: An advanced benders decomposition algorithm

Author

Listed:
  • Wen, Fang
  • Chen, Yao
  • Bai, Yun
  • Zhu, Qiaozhen
  • Li, Ninghai

Abstract

Train timetable during the end-of-service period is crucial for passenger accessibility and operation cost in urban rail transit networks. Existing studies have investigated the last train timetabling problem for improving passenger accessibility. This study investigates a train timetabling problem for the end-of-service period, which concentrates on the coordination of the service ending time on different lines and the last several train timetables. A mixed-integer linear programming model based on a space–time network is proposed to determine the number of train services provided in the end-of-service period while coordinating the timetables of both last and non-last trains, of which the objective function minimizes the number of inaccessible passengers and operation costs. To address the computational challenges, a Benders decomposition algorithm is developed and enhanced with dedicated acceleration strategies. A dual solution algorithm is proposed to efficiently generate the optimal dual solution of the subproblems. A reformulation and update strategy is proposed for the Benders cuts, and a relax-and-fix heuristic is developed to improve solving efficiency of the master problem. Small-scale numerical experiments demonstrate the optimality and efficiency of the proposed Benders decomposition algorithm. Large-scale experiments in the Wuhan network show that the proposed model and algorithm can improve passenger accessibility by 6.8% without additional operation cost, and by 38.7% with a 28.4% increment in operation cost.

Suggested Citation

  • Wen, Fang & Chen, Yao & Bai, Yun & Zhu, Qiaozhen & Li, Ninghai, 2024. "Urban rail train timetabling for the end-of-service period with passenger accessibility and operation cost: An advanced benders decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524002182
    DOI: 10.1016/j.trb.2024.103094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524002182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.