Recognition method of abnormal driving behavior using the bidirectional gated recurrent unit and convolutional neural network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2022.128317
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chih-Chiang Kuo & Jyun-Naih Lin & Syue-Hua Wu & Cheng-Hsuan Cho & Yi-Hong Chu & Frank Chee Da Tsai, 2014. "Multi-System Integration Scheme for Intelligence Transportation System Applications," International Journal of Wireless Networks and Broadband Technologies (IJWNBT), IGI Global, vol. 3(4), pages 21-35, October.
- Xing, Yang & Lv, Chen & Cao, Dongpu & Lu, Chao, 2020. "Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling," Applied Energy, Elsevier, vol. 261(C).
- Zuojin Li & Qing Yang & Shengfu Chen & Wei Zhou & Liukui Chen & Lei Song, 2019. "A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
- Wei Yuan & Zhuofan Liu & Rui Fu, 2018. "Predicting Drivers’ Eyes-Off-Road Duration in Different Driving Scenarios," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-9, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ma, Changxi & Liu, Tao, 2024. "Demand forecasting of shared bicycles based on combined deep learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
- Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
- Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
- Kun Liu & Guoqi Feng & Xingyu Jiang & Wenpeng Zhao & Zhiqiang Tian & Rizheng Zhao & Kaihang Bi, 2023. "A Feature Fusion Method for Driving Fatigue of Shield Machine Drivers Based on Multiple Physiological Signals and Auto-Encoder," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
- Zepeng Gao & Jianbo Feng & Chao Wang & Yu Cao & Bonan Qin & Tao Zhang & Senqi Tan & Riya Zeng & Hongbin Ren & Tongxin Ma & Youshan Hou & Jie Xiao, 2022. "Research on Vehicle Active Steering Stability Control Based on Variable Time Domain Input and State Information Prediction," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
- Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
- Ping-Huan Kuo & Ssu-Ting Lin & Jun Hu, 2020. "DNAE-GAN: Noise-free acoustic signal generator by integrating autoencoder and generative adversarial network," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
- Nie, Zifei & Farzaneh, Hooman, 2023. "Energy-efficient lane-change motion planning for personalized autonomous driving," Applied Energy, Elsevier, vol. 338(C).
- Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
More about this item
Keywords
Bidirectional gated recurrent unit; Convolutional neural network; Abnormal driving behavior; Deep neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008755. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.