IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121005021.html
   My bibliography  Save this article

Pedestrian dynamics with different corridor widths: Investigation on a series of uni-directional and bi-directional experiments

Author

Listed:
  • Jin, Cheng-Jie
  • Jiang, Rui
  • Liu, Tongfei
  • Li, Dawei
  • Wang, Hao
  • Liu, Xianglong

Abstract

In order to investigate the characteristics of uni- and bi-directional pedestrian flow, we organized 4 large-scale experiments from 2016 to 2019, and different corridor widths (W= 2.5 m, 2 m, 1.5 m and 1 m) are adopted. For uni-directional movement, either larger (W= 2.5 m) or smaller (W= 1 m) corridor width can slow down the pedestrians, thus the averaged flow rates with medium corridor widths (W= 2 m or 1.5 m) are higher. Besides, some other factors which can influence uni-directional movement are evaluated, including initial status, order of round and fluctuations of flow rates. For bi-directional movement, the lane formation processes could be categorized into five types. For Type 1 or 2, three or two lanes are directly formed. But for Type 3 or 4, the process is finished by two stages. For Type 5, the process just stagnates. After the lane formation, the averaged bi-directional flow rates when W= 2.5 m are higher than that of uni-directional ones, while in other three experiments they are nearly the same. All these results can help us learn more about the essence of pedestrian flow.

Suggested Citation

  • Jin, Cheng-Jie & Jiang, Rui & Liu, Tongfei & Li, Dawei & Wang, Hao & Liu, Xianglong, 2021. "Pedestrian dynamics with different corridor widths: Investigation on a series of uni-directional and bi-directional experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121005021
    DOI: 10.1016/j.physa.2021.126229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005021
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suma, Yushi & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2012. "Anticipation effect in pedestrian dynamics: Modeling and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 248-263.
    2. Zhao, Yongxiang & Zhang, H.M., 2017. "A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 315-327.
    3. Jin, Cheng-Jie & Jiang, Rui & Wei, Wei & Li, Dawei & Guo, Ning, 2018. "Microscopic events under high-density condition in uni-directional pedestrian flow experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 237-247.
    4. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    5. Nicolas, Alexandre & Bouzat, Sebastián & Kuperman, Marcelo N., 2017. "Pedestrian flows through a narrow doorway: Effect of individual behaviours on the global flow and microscopic dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 30-43.
    6. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    7. Isobe, Motoshige & Adachi, Taku & Nagatani, Takashi, 2004. "Experiment and simulation of pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 638-650.
    8. Jin, Cheng-Jie & Jiang, Rui & Li, Ruiwen & Li, Dawei, 2019. "Single-file pedestrian flow experiments under high-density conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Cheng-Jie & Shi, Ke-Da & Jiang, Rui & Li, Dawei & Fang, Shuyi, 2023. "Simulation of bi-directional pedestrian flow under high densities using a modified social force model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Ma, Liang & Chen, Bin & Chen, Lidong & Xu, Xiaoping & Liu, Sikai & Liu, Xiaocheng, 2022. "Data driven analysis of the desired speed in ordinary differential equation based pedestrian simulation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Cheng-Jie Jin & Ke-Da Shi & Shu-Yi Fang, 2023. "Simulation of Single-File Pedestrian Flow under High-Density Condition by a Modified Social Force Model," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    4. Fang, Shuyi & Jin, Cheng-Jie & Jiang, Rui & Li, Dawei, 2024. "Simulating the bi-directional pedestrian flow under high densities by a floor field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    5. Liu, Yulu & Ma, Xuechen & Tao, Yizhou & Dong, Liyun & Ding, Xu & Qiu, Xiang, 2024. "Numerical investigation on the impact of obstacles on phase transition in pedestrian counter-flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yidong & Hu, Zuoan & Zeng, Tian & Xie, Wei & Ma, Yi, 2023. "Influence of walkway slope on single-file pedestrian flow dynamics: Results from an experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    3. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    4. Xue, Shuqi & Shiwakoti, Nirajan, 2023. "A meta-synthesis of experimental studies of pedestrian movement in single-file flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Tao, Y.Z. & Dong, L.Y., 2017. "A Cellular Automaton model for pedestrian counterflow with swapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 155-168.
    6. Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    8. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    9. Fang, Shuyi & Jin, Cheng-Jie & Jiang, Rui & Li, Dawei, 2024. "Simulating the bi-directional pedestrian flow under high densities by a floor field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    10. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    11. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    12. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    13. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    14. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    15. Guo, Ning & Jiang, Rui & Wong, S.C. & Hao, Qing-Yi & Xue, Shu-Qi & Xiao, Yao & Wu, Chao-Yun, 2020. "Modeling the interactions of pedestrians and cyclists in mixed flow conditions in uni- and bidirectional flows on a shared pedestrian-cycle road," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 259-284.
    16. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    17. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Ding, Ning & Chen, Tao & Zhu, Yu & Lu, Yang, 2021. "State-of-the-art high-rise building emergency evacuation behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    19. Xiao, Tianyi & Mu, Tong & Shen, Sunle & Song, Yiming & Yang, Shufan & He, Jie, 2022. "A dynamic physical-distancing model to evaluate spatial measures for prevention of Covid-19 spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    20. Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121005021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.