IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v404y2014icp92-105.html
   My bibliography  Save this article

Algebraic connectivity of interdependent networks

Author

Listed:
  • Martín-Hernández, J.
  • Wang, H.
  • Van Mieghem, P.
  • D’Agostino, G.

Abstract

The algebraic connectivity μN−1, i.e. the second smallest eigenvalue of the Laplacian matrix, plays a crucial role in dynamic phenomena such as diffusion processes, synchronization stability, and network robustness. In this work we study the algebraic connectivity in the general context of interdependent networks, or network-of-networks (NoN). The present work shows, both analytically and numerically, how the algebraic connectivity of NoNs experiences a transition. The transition is characterized by a saturation of the algebraic connectivity upon the addition of sufficient coupling links (between the two individual networks of a NoN). In practical terms, this shows that NoN topologies require only a fraction of coupling links in order to achieve optimal diffusivity. Furthermore, we observe a footprint of the transition on the properties of Fiedler’s spectral bisection.

Suggested Citation

  • Martín-Hernández, J. & Wang, H. & Van Mieghem, P. & D’Agostino, G., 2014. "Algebraic connectivity of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 92-105.
  • Handle: RePEc:eee:phsmap:v:404:y:2014:i:c:p:92-105
    DOI: 10.1016/j.physa.2014.02.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114001526
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.02.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Chen & Jun-an Lu & Choujun Zhan & Guanrong Chen, 2012. "Laplacian Spectra and Synchronization Processes on Complex Networks," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, edition 1, chapter 0, pages 81-113, Springer.
    2. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    3. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    4. Lin, Peng & Jia, Yingmin, 2008. "Average consensus in networks of multi-agents with both switching topology and coupling time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 303-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xin & Wu, Haotian & Scoglio, Caterina & Gruenbacher, Don, 2015. "Robust allocation of weighted dependency links in cyber–physical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 316-327.
    2. Rueda, Diego F. & Calle, Eusebi, 2017. "Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 3-12.
    3. Gafarov, F.M., 2016. "Emergence of the small-world architecture in neural networks by activity dependent growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 409-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonatan Zischg & Christopher Klinkhamer & Xianyuan Zhan & P. Suresh C. Rao & Robert Sitzenfrei, 2019. "A Century of Topological Coevolution of Complex Infrastructure Networks in an Alpine City," Complexity, Hindawi, vol. 2019, pages 1-16, January.
    2. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
    3. Simone Caschili & Francesca Medda & Alan Wilson, 2015. "An Interdependent Multi-Layer Model: Resilience of International Networks," Networks and Spatial Economics, Springer, vol. 15(2), pages 313-335, June.
    4. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    5. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    6. Guo, Liangzhu & Lou, Xiaodan & Shi, Peiteng & Wang, Jun & Huang, Xiaohan & Zhang, Jiang, 2015. "Flow distances on open flow networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 235-248.
    7. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    8. Tang, Jinjun & Li, Zhitao & Gao, Fan & Zong, Fang, 2021. "Identifying critical metro stations in multiplex network based on D–S evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    9. Thacker, Scott & Pant, Raghav & Hall, Jim W., 2017. "System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 30-41.
    10. Kong, Linghao & Wang, Lizhi & Cao, Zhongzheng & Wang, Xiaohong, 2024. "Resilience evaluation of UAV swarm considering resource supplementation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    14. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    16. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    17. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    18. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    19. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    20. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:404:y:2014:i:c:p:92-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.