IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v256y2015icp334-343.html
   My bibliography  Save this article

On differences and similarities in the analysis of Lorenz, Chen, and Lu systems

Author

Listed:
  • Leonov, G.A.
  • Kuznetsov, N.V.

Abstract

Currently it is being actively discussed the question of the equivalence of various Lorenz-like systems and the possibility of universal consideration of their behavior (Algaba et al., 2013a,b, 2014b,c; Chen, 2013; Chen and Yang, 2013; Leonov, 2013a), in view of the possibility of reduction of such systems to the same form with the help of various transformations. In the present paper the differences and similarities in the analysis of the Lorenz, the Chen and the Lu systems are discussed. It is shown that the Chen and the Lu systems stimulate the development of new methods for the analysis of chaotic systems. Open problems are discussed.

Suggested Citation

  • Leonov, G.A. & Kuznetsov, N.V., 2015. "On differences and similarities in the analysis of Lorenz, Chen, and Lu systems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 334-343.
  • Handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:334-343
    DOI: 10.1016/j.amc.2014.12.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314017937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tigan, Gheorghe & Opriş, Dumitru, 2008. "Analysis of a 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1315-1319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexeeva, Tatyana A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2021. "Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Alexeeva, Tatyana A. & Barnett, William A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2020. "Dynamics of the Shapovalov mid-size firm model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Li Xiong & Zhenlai Liu & Xinguo Zhang, 2017. "Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System," Complexity, Hindawi, vol. 2017, pages 1-23, November.
    5. Fuchen Zhang & Rui Chen & Xiusu Chen, 2017. "Analysis of a Generalized Lorenz–Stenflo Equation," Complexity, Hindawi, vol. 2017, pages 1-6, December.
    6. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    7. Zhang, Fuchen, 2015. "On a model of the dynamical systems describing convective fluid motion in rotating cavity," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 873-882.
    8. Zhang, Fuchen & Liao, Xiaofeng & Zhang, Guangyun, 2016. "On the global boundedness of the Lü system," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 332-339.
    9. Qasim M. Zainel & Saad M. Darwish & Murad B. Khorsheed, 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    10. Čermák, Jan & Nechvátal, Luděk, 2019. "Stability and chaos in the fractional Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 24-33.
    11. Bayani, Atiyeh & Alexander, Prasina & Azarnoush, Hamed & Rajagopal, Karthikeyan & Jafari, Sajad & Nazarimehr, Fahimeh, 2023. "Designing networks with specific synchronization transitions independent of the system’s dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shuangling & Qu, Jingjia, 2021. "On first integrals of a family of generalized Lorenz-like systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    3. Wu, Ranchao & Fang, Tianbao, 2015. "Stability and Hopf bifurcation of a Lorenz-like system," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 335-343.
    4. Li, Xian-Feng & Chu, Yan-Dong & Leung, Andrew Y.T. & Zhang, Hui, 2017. "Synchronization of uncertain chaotic systems via complete-adaptive-impulsive controls," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 24-30.
    5. Tigan, Gheorghe & Constantinescu, Dana, 2009. "Heteroclinic orbits in the T and the Lü systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 20-23.
    6. Loong Soon Tee & Zabidin Salleh, 2013. "Dynamical Analysis of a Modified Lorenz System," Journal of Mathematics, Hindawi, vol. 2013, pages 1-8, December.
    7. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Li, Xian-Feng & Chu, Yan-Dong & Zhang, Jian-Gang & Chang, Ying-Xiang, 2009. "Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2360-2370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:334-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.