IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v118y2019i3d10.1007_s11192-019-03010-5.html
   My bibliography  Save this article

Measuring academic influence using heterogeneous author-citation networks

Author

Listed:
  • Fen Zhao

    (University of Windsor)

  • Yi Zhang

    (University of Windsor)

  • Jianguo Lu

    (University of Windsor)

  • Ofer Shai

    (Chan Zuckerberg Initiative Inc.)

Abstract

Academic influence has been traditionally measured by citation counts and metrics derived from it, such as H-index and G-index. PageRank based algorithms have been used to give higher weight to citations from more influential papers. A better metric is to add authors into the citation network so that the importance of authors and papers are evaluated recursively within the same framework. Based on such heterogeneous author-citation academic network, this paper gives a new algorithm for ranking authors. It is tested on two large networks, one in Heath domain that contains about 500 million citation links, the other in Computer Science that contains 8 million links. We find that our method outperforms other 10 methods in terms of the number of award winners identified in their top-k rankings. Surprisingly, our method can identify 8 Turing award winners among top 20 authors. It also demonstrates some interesting phenomenons. For instance, among the top authors, our ranking negatively correlates with citation ranking and paper count ranking.

Suggested Citation

  • Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
  • Handle: RePEc:spr:scient:v:118:y:2019:i:3:d:10.1007_s11192-019-03010-5
    DOI: 10.1007/s11192-019-03010-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03010-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03010-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    2. Eleni Fragkiadaki & Georgios Evangelidis, 2016. "Erratum to: Three novel indirect indicators for the assessment of papers and authors based on generations of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 1011-1011, August.
    3. Ying Ding & Erjia Yan & Arthur Frazho & James Caverlee, 2009. "PageRank for ranking authors in co‐citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2229-2243, November.
    4. Jevin D. West & Michael C. Jensen & Ralph J. Dandrea & Gregory J. Gordon & Carl T. Bergstrom, 2013. "Author‐level Eigenfactor metrics: Evaluating the influence of authors, institutions, and countries within the social science research network community," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(4), pages 787-801, April.
    5. Chao Gao & Zhen Wang & Xianghua Li & Zili Zhang & Wei Zeng, 2016. "PR-Index: Using the h-Index and PageRank for Determining True Impact," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-13, September.
    6. Eleni Fragkiadaki & Georgios Evangelidis, 2016. "Three novel indirect indicators for the assessment of papers and authors based on generations of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 657-694, February.
    7. Su, Cheng & Pan, YunTao & Zhen, YanNing & Ma, Zheng & Yuan, JunPeng & Guo, Hong & Yu, ZhengLu & Ma, CaiFeng & Wu, YiShan, 2011. "PrestigeRank: A new evaluation method for papers and journals," Journal of Informetrics, Elsevier, vol. 5(1), pages 1-13.
    8. González-Pereira, Borja & Guerrero-Bote, Vicente P. & Moya-Anegón, Félix, 2010. "A new approach to the metric of journals’ scientific prestige: The SJR indicator," Journal of Informetrics, Elsevier, vol. 4(3), pages 379-391.
    9. Erjia Yan, 2014. "Topic-based Pagerank: toward a topic-level scientific evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 407-437, August.
    10. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    11. Tehmina Amjad & Ying Ding & Ali Daud & Jian Xu & Vincent Malic, 2015. "Topic-based heterogeneous rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 313-334, July.
    12. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2016. "Ranking scientific publications with similarity-preferential mechanism," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 805-816, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tehmina Amjad & Yusra Rehmat & Ali Daud & Rabeeh Ayaz Abbasi, 2020. "Scientific impact of an author and role of self-citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 915-932, February.
    2. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    3. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    4. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Yonghe Lu & Jiayi Luo & Ying Xiao & Hou Zhu, 2021. "Text representation model of scientific papers based on fusing multi-viewpoint information and its quality assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6937-6963, August.
    6. Yi Zhang & Fen Zhao & Jianguo Lu, 2019. "P2V: large-scale academic paper embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 399-432, October.
    7. Hayat D. Bedru & Chen Zhang & Feng Xie & Shuo Yu & Iftikhar Hussain, 2023. "CLARA: citation and similarity-based author ranking," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1091-1117, February.
    8. Xipeng Liu & Xinmiao Li, 2022. "Early Identification of Significant Patents Using Heterogeneous Applicant-Citation Networks Based on the Chinese Green Patent Data," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    9. Gangan Prathap, 2019. "Expected, observed and relative paper scores from heterogeneous author-paper-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1275-1279, May.
    10. Xie, Qing & Zhang, Xinyuan & Kim, Giyeong & Song, Min, 2022. "Exploring the influence of coauthorship with top scientists on researchers’ affiliation, research topic, productivity, and impact," Journal of Informetrics, Elsevier, vol. 16(3).
    11. Cao, Huiying & Gao, Chao & Wang, Zhen, 2023. "Ranking academic institutions by means of institution–publication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Wang & An Zeng & Ying Fan & Zengru Di, 2019. "Ranking scientific publications considering the aging characteristics of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 155-166, July.
    2. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    3. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).
    4. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2016. "Ranking scientific publications with similarity-preferential mechanism," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 805-816, February.
    5. Cao, Huiying & Gao, Chao & Wang, Zhen, 2023. "Ranking academic institutions by means of institution–publication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    6. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "Globalised vs averaged: Bias and ranking performance on the author level," Journal of Informetrics, Elsevier, vol. 13(1), pages 299-313.
    7. Eleni Fragkiadaki & Georgios Evangelidis, 2014. "Review of the indirect citations paradigm: theory and practice of the assessment of papers, authors and journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 261-288, May.
    8. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2018. "Author ranking evaluation at scale," Journal of Informetrics, Elsevier, vol. 12(3), pages 679-702.
    9. Fiala, Dalibor & Šubelj, Lovro & Žitnik, Slavko & Bajec, Marko, 2015. "Do PageRank-based author rankings outperform simple citation counts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 334-348.
    10. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    11. Jun Zhang & Yan Hu & Zhaolong Ning & Amr Tolba & Elsayed Elashkar & Feng Xia, 2018. "AIRank: Author Impact Ranking through Positions in Collaboration Networks," Complexity, Hindawi, vol. 2018, pages 1-16, June.
    12. Fuli Zhang, 2017. "Evaluating journal impact based on weighted citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 1155-1169, November.
    13. Eleni Fragkiadaki & Georgios Evangelidis, 2016. "Three novel indirect indicators for the assessment of papers and authors based on generations of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 657-694, February.
    14. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    15. Jun Zhang & Zhaolong Ning & Xiaomei Bai & Xiangjie Kong & Jinmeng Zhou & Feng Xia, 2017. "Exploring time factors in measuring the scientific impact of scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1301-1321, September.
    16. Zhang, Baolong & Wang, Hao & Deng, Sanhong & Su, Xinning, 2020. "Measurement and analysis of Chinese journal discriminative capacity," Journal of Informetrics, Elsevier, vol. 14(1).
    17. Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
    18. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    19. Niu, Qikai & Zhou, Jianlin & Zeng, An & Fan, Ying & Di, Zengru, 2016. "Which publication is your representative work?," Journal of Informetrics, Elsevier, vol. 10(3), pages 842-853.
    20. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:118:y:2019:i:3:d:10.1007_s11192-019-03010-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.