IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v628y2023ics0378437123007434.html
   My bibliography  Save this article

Graph regularization centrality

Author

Listed:
  • Col, Alcebiades Dal
  • Petronetto, Fabiano

Abstract

This paper introduces a novel centrality for the nodes of a graph. Our centrality is based on the graph regularization, a tool of graph signal processing theory. For this reason, it is called graph regularization centrality (GRC). In order to define the centrality of a node, a delta signal centered on this node is defined and a new smooth signal is generated by the graph regularization of the delta signal. The transformation of the delta signal into the new smooth signal strongly depends on the position of the node in the graph. Our centrality takes advantage of this feature to define a centrality for each node of the graph. Synthetic and real-world graphs are used to demonstrate the effectiveness of our centrality that combines local and global positioning of nodes in one measure. Furthermore, it is compared against classical centralities and graph Fourier transform centrality, which is also based on graph signal processing theory. We conclude with a discussion of the main features of GRC and a proposal for potential future work.

Suggested Citation

  • Col, Alcebiades Dal & Petronetto, Fabiano, 2023. "Graph regularization centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
  • Handle: RePEc:eee:phsmap:v:628:y:2023:i:c:s0378437123007434
    DOI: 10.1016/j.physa.2023.129188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123007434
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mussone, L. & Viseh, H. & Notari, R., 2022. "Novel centrality measures and applications to underground networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2019. "A variant of the current flow betweenness centrality and its application in urban networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 600-615.
    3. Curado, Manuel & Rodriguez, Rocio & Tortosa, Leandro & Vicent, Jose F., 2022. "Anew centrality measure in dense networks based on two-way random walk betweenness," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Hu, Ping & Fan, Wenli & Mei, Shengwei, 2015. "Identifying node importance in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 169-176.
    6. Singh, Rahul & Chakraborty, Abhishek & Manoj, B.S., 2017. "GFT centrality: A new node importance measure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 185-195.
    7. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    8. Yang, Xu-Hua & Xiong, Zhen & Ma, Fangnan & Chen, Xiaoze & Ruan, Zhongyuan & Jiang, Peng & Xu, Xinli, 2021. "Identifying influential spreaders in complex networks based on network embedding and node local centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Rocío Rodríguez & Manuel Curado & Francy D. Rodríguez & José F. Vicent, 2024. "Influential Yield Strength of Steel Materials with Return Random Walk Gravity Centrality," Mathematics, MDPI, vol. 12(3), pages 1-12, January.
    3. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    5. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    6. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    8. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Jiang, Cheng & Liu, Zhonghua, 2019. "Detecting multiple key players under the positive effect by using a distance-based connectivity approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Dong, Lijun & Wang, Yi & Liu, Ran & Pi, Benjie & Wu, Liuyi, 2016. "Toward edge minability for role mining in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 274-286.
    11. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    12. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    13. Malang, Kanokwan & Wang, Shuliang & Phaphuangwittayakul, Aniwat & Lv, Yuanyuan & Yuan, Hanning & Zhang, Xiuzhen, 2020. "Identifying influential nodes of global terrorism network: A comparison for skeleton network extraction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Zhou, Bo & Song, Qiankun & Zhao, Zhenjiang & Liu, Tangzhi, 2020. "A reinforcement learning scheme for the equilibrium of the in-vehicle route choice problem based on congestion game," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    15. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Mussone, Lorenzo & Aranda Salgado, Valeria J. & Notari, Roberto, 2024. "Evaluation of robustness in underground networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    17. Xiao, Feng & Li, Jin & Wei, Bo, 2022. "Cascading failure analysis and critical node identification in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Jiayu Qin & Gang Mei & Lei Xiao, 2020. "Building the Traffic Flow Network with Taxi GPS Trajectories and Its Application to Identify Urban Congestion Areas for Traffic Planning," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    19. Wang, Ning & Gao, Ying & He, Jia-tao & Yang, Jun, 2022. "Robustness evaluation of the air cargo network considering node importance and attack cost," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Sheng, Jinfang & Dai, Jinying & Wang, Bin & Duan, Guihua & Long, Jun & Zhang, Junkai & Guan, Kerong & Hu, Sheng & Chen, Long & Guan, Wanghao, 2020. "Identifying influential nodes in complex networks based on global and local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:628:y:2023:i:c:s0378437123007434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.