IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v412y2022ics0096300321006445.html
   My bibliography  Save this article

Anew centrality measure in dense networks based on two-way random walk betweenness

Author

Listed:
  • Curado, Manuel
  • Rodriguez, Rocio
  • Tortosa, Leandro
  • Vicent, Jose F.

Abstract

Many scholars have tried to address the identification of critical nodes in complex networks from different perspectives. For instance, by means of the betweenness methods based on shortest paths and random walk, it is possible to measure the global importance of a node as an intermediate node. All these metrics have the common characteristic of not taking into account the density of the clusters. In this paper, we apply an analysis of network centrality, from a perspective oriented to ranking nodes, reinforcing dense communities using evaluating graphs using a two-trip transition probability matrix. We define a new centrality measure based on random walk betweenness. We study and analyse the new metric as a betweenness centrality measure with common characteristics with Pagerank, presenting through its practical implementation in some examples based on synthetic, and testing with well-known real-world networks. This method helps to increase the ranking of nodes belonging to dense clusters with a higher average degree than the remaining clusters, and it can detect the weakness of a network comparing it with the classical betweenness centrality measure.

Suggested Citation

  • Curado, Manuel & Rodriguez, Rocio & Tortosa, Leandro & Vicent, Jose F., 2022. "Anew centrality measure in dense networks based on two-way random walk betweenness," Applied Mathematics and Computation, Elsevier, vol. 412(C).
  • Handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006445
    DOI: 10.1016/j.amc.2021.126560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    2. Wang, Jia-zeng & Liu, Zeng-rong & Xu, Jianhua, 2007. "Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 715-721.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    4. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    5. Cai Gao & Xin Lan & Xiaoge Zhang & Yong Deng, 2013. "A Bio-Inspired Methodology of Identifying Influential Nodes in Complex Networks," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    6. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Dechao Ma & Fengzhi Wu & Mengxin Sun & Shuangqing Xu & Qiuyue Hua & Ziyuan Sun, 2023. "Exploring the Knowledge Structure and Hotspot Evolution of Greenwashing: A Visual Analysis Based on Bibliometrics," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    2. Rocío Rodríguez & Manuel Curado & Francy D. Rodríguez & José F. Vicent, 2024. "Influential Yield Strength of Steel Materials with Return Random Walk Gravity Centrality," Mathematics, MDPI, vol. 12(3), pages 1-12, January.
    3. Col, Alcebiades Dal & Petronetto, Fabiano, 2023. "Graph regularization centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    2. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    3. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    4. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Stefano Breschi & Lucia Cusmano, 2002. "Unveiling the Texture of a European Research Area: Emergence of Oligarchic Networks under EU Framework Programmes," KITeS Working Papers 130, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Jul 2002.
    8. Linyuan Lü & Yi-Cheng Zhang & Chi Ho Yeung & Tao Zhou, 2011. "Leaders in Social Networks, the Delicious Case," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    9. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    10. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    11. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    12. Paul Sheridan & Yuichi Yagahara & Hidetoshi Shimodaira, 2008. "A preferential attachment model with Poisson growth for scale-free networks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 747-761, December.
    13. Ikeda, N., 2007. "Network formed by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 701-713.
    14. Zengwang Xu & Daniel Sui, 2007. "Small-world characteristics on transportation networks: a perspective from network autocorrelation," Journal of Geographical Systems, Springer, vol. 9(2), pages 189-205, June.
    15. Ding, Jin & Lu, Yong-Zai & Chu, Jian, 2013. "Studies on controllability of directed networks with extremal optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6603-6615.
    16. Modjtaba Ghorbani & Matthias Dehmer & Frank Emmert-Streib, 2020. "Properties of Entropy-Based Topological Measures of Fullerenes," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    17. Baskaran, Thushyanthan & Blöchl, Florian & Brück, Tilman & Theis, Fabian J., 2011. "The Heckscher-Ohlin model and the network structure of international trade," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 135-145, April.
    18. Tsonis, A.A. & Roebber, P.J., 2004. "The architecture of the climate network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 497-504.
    19. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    20. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.