IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v573y2021ics0378437121002430.html
   My bibliography  Save this article

Identifying influential spreaders in complex networks based on network embedding and node local centrality

Author

Listed:
  • Yang, Xu-Hua
  • Xiong, Zhen
  • Ma, Fangnan
  • Chen, Xiaoze
  • Ruan, Zhongyuan
  • Jiang, Peng
  • Xu, Xinli

Abstract

Identifying influential spreads in a network is of great significance for the analysis and control of the information dissemination process in complex networks. Based on the network embedding method, we propose an algorithm to identify the high influence nodes of the network. Firstly, the DeepWalk network embedding algorithm is used to map the high-dimensional complex network to a low-dimensional vector space to calculate the Euclidean distance between the local node pairs. Then, combined with the network topology information, a local centrality index of the network nodes is proposed to identify the high influence nodes. In eight real networks, the new algorithm is compared with five well-known identification methods. Numerical simulation results show that the new algorithm has a good performance in identifying influential spreaders.

Suggested Citation

  • Yang, Xu-Hua & Xiong, Zhen & Ma, Fangnan & Chen, Xiaoze & Ruan, Zhongyuan & Jiang, Peng & Xu, Xinli, 2021. "Identifying influential spreaders in complex networks based on network embedding and node local centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
  • Handle: RePEc:eee:phsmap:v:573:y:2021:i:c:s0378437121002430
    DOI: 10.1016/j.physa.2021.125971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121002430
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Dai, Zhen & Li, Ping & Chen, Yan & Zhang, Kai & Zhang, Jie, 2019. "Influential node ranking via randomized spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Linyuan Lü & Yi-Cheng Zhang & Chi Ho Yeung & Tao Zhou, 2011. "Leaders in Social Networks, the Delicious Case," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    4. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    5. Zhu, Canshi & Wang, Xiaoyang & Zhu, Lin, 2017. "A novel method of evaluating key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 43-50.
    6. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    7. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Bo & Wang, Lin & Wang, Xiaofan, 2022. "OLMNE+FT: Multiplex network embedding based on overlapping links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Jiang, Jiu-Lei & Fang, Hui & Li, Sheng-Qing & Li, Wei-Min, 2022. "Identifying important nodes for temporal networks based on the ASAM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    3. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Funel, Agostino, 2022. "A method to compute the communicability of nodes through causal paths in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    6. Hou, Lei, 2022. "Network versus content: The effectiveness in identifying opinion leaders in an online social network with empirical evaluation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    7. Col, Alcebiades Dal & Petronetto, Fabiano, 2023. "Graph regularization centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    4. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    5. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    6. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    7. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    9. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    10. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    11. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    12. Xiaojian Ma & Yinghong Ma, 2019. "The Local Triangle Structure Centrality Method to Rank Nodes in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, January.
    13. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    14. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    16. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    17. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    18. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    20. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:573:y:2021:i:c:s0378437121002430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.