IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v626y2023ics0378437123006143.html
   My bibliography  Save this article

Human-centered driving authority allocation for driver-automation shared control: A two-layer game-theoretic approach

Author

Listed:
  • Guo, Wenfeng
  • Song, Xiaolin
  • Cao, Haotian
  • Zhao, Song
  • Yi, Binlin
  • Wang, Jianqiang

Abstract

Shared control system (SCS) has become an effective approach to enhance driving safety and improve traffic flow efficiency, but desire the SCS to be accepted by the public requires a well-designed driving authority allocation strategy. This paper proposes a human-centered authority allocation strategy for the SCS under a novel two-layer game framework considering driver acceptance and traffic participant’s social behaviors. First, the noncooperative Nash game theory is used to model the interaction between the driver and trajectory-tracking controller, and the Nash equilibrium solution is derived. Then, several driver-in-the-loop (DIL) tests are conducted to analysis the characteristics of different driver acceptance and social behaviors in the use of the SCS. On this basis, the authority allocation problem of the SCS is formulated as a Stackelberg game optimization problem, which takes both the driver acceptance and the traffic participant’s social behaviors into consideration to improve the collaboration performance. Finally, the driver-automation interaction and vehicle-vehicle interaction are considered in an integrated manner to form a two-layer game problem for authority allocation. Four case studies are carried out to verify the performance of the proposed authority allocation strategy. The results show that the proposed strategy can adapt to different acceptance of human driver to controller intervention, while addressing different social interactions with surrounding traffic participants.

Suggested Citation

  • Guo, Wenfeng & Song, Xiaolin & Cao, Haotian & Zhao, Song & Yi, Binlin & Wang, Jianqiang, 2023. "Human-centered driving authority allocation for driver-automation shared control: A two-layer game-theoretic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
  • Handle: RePEc:eee:phsmap:v:626:y:2023:i:c:s0378437123006143
    DOI: 10.1016/j.physa.2023.129059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123006143
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikh, Muhammad Sameer & Wang, Ji & Regan, Amelia, 2021. "A game theory-based controller approach for identifying incidents caused by aberrant lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    2. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    3. Yi, Ziwei & Lu, Wenqi & Qu, Xu & Gan, Jing & Li, Linheng & Ran, Bin, 2022. "A bidirectional car-following model considering distance balance between adjacent vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Yang, Yichen & Cao, Tianyu & Xu, Shangzhi & Qian, Yeqing & Li, Zhipeng, 2022. "Influence of driving style on traffic flow fuel consumption and emissions based on the field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    5. Ji Ang & David Levinson, 2020. "A Review of Game Theory Models of Lane Changing," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    6. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    7. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Linheng & An, Bocheng & Wang, Zhiyu & Gan, Jing & Qu, Xu & Ran, Bin, 2024. "Stability analysis and numerical simulation of a car-following model considering safety potential field and V2X communication: A focus on influence weight of multiple vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    2. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Lu, Wenqi & Yi, Ziwei & Gidofalvi, Gyözö & Simoni, Michele D. & Rui, Yikang & Ran, Bin, 2024. "Urban network geofencing with dynamic speed limit policy via deep reinforcement learning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    4. Yang, Yichen & Li, Zuxing & Li, Yabin & Cao, Tianyu & Li, Zhipeng, 2023. "Stability enhancement for traffic flow via self–stabilizing control strategy in the presence of packet loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    5. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    6. Yin, Jiacheng & Li, Zongping & Cao, Peng & Li, Linheng & Ju, Yanni, 2023. "Car-following modeling based on Morse model with consideration of road slope in connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    9. Yakup Çelikbilek & Sarbast Moslem, 2023. "A grey multi criteria decision making application for analyzing the essential reasons of recurrent lane change," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 916-941, June.
    10. Jiang, Yangsheng & Tan, Li & Xiao, Guosheng & Wu, Yunxia & Yao, Zhihong, 2024. "Platoon-aware cooperative lane-changing strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    11. Li, Sutong & Kang, Leilei & Huang, Hao & Liu, Lan, 2023. "A perimeter control model of urban road network based on cooperative-noncooperative two-stage game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. He, Yongming & Feng, Jia & Wei, Kun & Cao, Jian & Chen, Shisheng & Wan, Yanan, 2023. "Modeling and simulation of lane-changing and collision avoiding autonomous vehicles on superhighways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    13. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    14. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    15. Sun, Baofeng & Ma, Guodong & Song, Jia & Cheng, Zeyang & Wang, Wei, 2023. "Driving safety field modeling focused on heterogeneous traffic flows and cooperative control strategy in highway merging zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Liu, Hongjie & Yuan, Tengfei & Zeng, Xiaoqing & Guo, KaiYi & Wang, Yizeng & Mo, Yanghui & Xu, Hongzhe, 2024. "Eco-driving strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    17. Tianpei Tang & Yuntao Guo & Guohui Zhang & Hua Wang & Quan Shi, 2020. "Understanding the Interaction between Cyclists’ Traffic Violations and Enforcement Strategies: An Evolutionary Game-Theoretic Analysis," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
    18. Ai, Yi & Li, Yueyang & Han, Xun & Yao, Zhihong & Li, Zongping, 2024. "Real-time risk assessment method for multi-aircraft interaction based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    19. Frantisek Masek & Jan Zemlicka, 2024. "Average Inflation Targeting: How far to look into the past and the future?," Working and Discussion Papers WP 5/2024, Research Department, National Bank of Slovakia.
    20. Bowen Gong & Zhipeng Xu & Ruixin Wei & Tao Wang & Ciyun Lin & Peng Gao, 2023. "Reinforcement Learning-Based Lane Change Decision for CAVs in Mixed Traffic Flow under Low Visibility Conditions," Mathematics, MDPI, vol. 11(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:626:y:2023:i:c:s0378437123006143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.