IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v622y2023ics0378437123004004.html
   My bibliography  Save this article

Quantifying time series complexity by multi-scale transition network approaches

Author

Listed:
  • Wang, Xiaoyan
  • Tang, Ming
  • Guan, Shuguang
  • Zou, Yong

Abstract

Complex network approaches for nonlinear time series analysis are still under fast developments. In this work, we propose a set of entropy measures to characterize the multi-scale transition networks which are constructed from nonlinear time series. These entropy measures compare the distances between an empirical distribution P to a uniform distribution Pe, which are achieved via the multi-scale node transition matrix from different perspectives of out-link transitions, and in-link transitions, respectively. In addition, the entropy measures show convergence to zeros for white noise while non-zero values for deterministic chaotic processes. In correlated stochastic processes, the convergence rates are influenced by the correlation length. We show that entropy measures based on transition complexity are able to capture different dynamical states, i.e., tracking routes to chaos and dynamical hysteresis. In the experimental EEG analysis, we show that epileptic brain states are successfully distinguished from healthy control by all entropy measures.

Suggested Citation

  • Wang, Xiaoyan & Tang, Ming & Guan, Shuguang & Zou, Yong, 2023. "Quantifying time series complexity by multi-scale transition network approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
  • Handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004004
    DOI: 10.1016/j.physa.2023.128845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123004004
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosso, Osvaldo A. & Carpi, Laura C. & Saco, Patricia M. & Gómez Ravetti, Martín & Plastino, Angelo & Larrondo, Hilda A., 2012. "Causality and the entropy–complexity plane: Robustness and missing ordinal patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 42-55.
    2. Wang, Xiaoyan & Han, Xiujing & Chen, Zhangyao & Bi, Qinsheng & Guan, Shuguang & Zou, Yong, 2022. "Multi-scale transition network approaches for nonlinear time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Andriana S L O Campanharo & M Irmak Sirer & R Dean Malmgren & Fernando M Ramos & Luís A Nunes Amaral, 2011. "Duality between Time Series and Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    4. Borges, João B. & Ramos, Heitor S. & Mini, Raquel A.F. & Rosso, Osvaldo A. & Frery, Alejandro C. & Loureiro, Antonio A.F., 2019. "Learning and distinguishing time series dynamics via ordinal patterns transition graphs," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    5. Tiago A. Schieber & Laura Carpi & Albert Díaz-Guilera & Panos M. Pardalos & Cristina Masoller & Martín G. Ravetti, 2017. "Quantification of network structural dissimilarities," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Ahmadi, Negar & Pei, Yulong & Pechenizkiy, Mykola, 2019. "Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 289-308.
    5. Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
    6. Erick Armingol & Hratch M. Baghdassarian & Cameron Martino & Araceli Perez-Lopez & Caitlin Aamodt & Rob Knight & Nathan E. Lewis, 2022. "Context-aware deconvolution of cell–cell communication with Tensor-cell2cell," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Pierini, Jorge O. & Lovallo, Michele & Telesca, Luciano, 2012. "Visibility graph analysis of wind speed records measured in central Argentina," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5041-5048.
    8. Viviane M. Gomes & Joao R. B. Paiva & Marcio R. C. Reis & Gabriel A. Wainer & Wesley P. Calixto, 2019. "Mechanism for Measuring System Complexity Applying Sensitivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    9. Wang, Xiaoyan & Han, Xiujing & Chen, Zhangyao & Bi, Qinsheng & Guan, Shuguang & Zou, Yong, 2022. "Multi-scale transition network approaches for nonlinear time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Bokyong Shin & Mikko Rask, 2021. "Assessment of Online Deliberative Quality: New Indicators Using Network Analysis and Time-Series Analysis," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    11. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Gao, Cuixia & Tao, Simin & Su, Bin & Mensah, Isaac Adjei & Sun, Mei, 2023. "Exploring renewable energy trade coopetition relationships: Evidence from belt and road countries, 1996-2018," Renewable Energy, Elsevier, vol. 202(C), pages 196-209.
    13. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Flores-Marquez, Leticia, 2013. "Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6571-6577.
    14. Ren, Weikai & Jin, Zhijun, 2023. "Phase space visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Traversaro, Francisco & Legnani, Walter & Redelico, Francisco O., 2020. "Influence of the signal to noise ratio for the estimation of Permutation Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    16. Luciano Telesca & Michele Lovallo & Alejandro Ramirez-Rojas & Leticia Flores-Marquez, 2014. "Relationship between the Frequency Magnitude Distribution and the Visibility Graph in the Synthetic Seismicity Generated by a Simple Stick-Slip System with Asperities," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-7, August.
    17. Jamshid Ardalankia & Jafar Askari & Somaye Sheykhali & Emmanuel Haven & G. Reza Jafari, 2020. "Mapping Coupled Time-series Onto Complex Network," Papers 2004.13536, arXiv.org, revised Aug 2020.
    18. Baggio, Rodolfo & Sainaghi, Ruggero, 2016. "Mapping time series into networks as a tool to assess the complex dynamics of tourism systems," Tourism Management, Elsevier, vol. 54(C), pages 23-33.
    19. Li, Wenjie & Ji, Jinchen & Huang, Lihong & Zhang, Ying, 2023. "Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    20. Borges, João B. & Ramos, Heitor S. & Mini, Raquel A.F. & Rosso, Osvaldo A. & Frery, Alejandro C. & Loureiro, Antonio A.F., 2019. "Learning and distinguishing time series dynamics via ordinal patterns transition graphs," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.