IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922002363.html
   My bibliography  Save this article

Multi-scale transition network approaches for nonlinear time series analysis

Author

Listed:
  • Wang, Xiaoyan
  • Han, Xiujing
  • Chen, Zhangyao
  • Bi, Qinsheng
  • Guan, Shuguang
  • Zou, Yong

Abstract

Complex networks are powerful tools for nonlinear time series analysis, which are undergoing fast development in the recent decade. Here we propose a novel way to construct multi-scale transition networks from time series, which are based on coarse-graining partitions of phase space. Using time series from both discrete Hénon map and continuous Rössler systems, we demonstrate that the multi-scale transition entropy values of the resulting networks show the same power as the Lyapunov exponents, identifying chaotic transitions successfully. The advantage is that our method works successfully when only a small number of 3–5 bins is used for the partition generation, while the traditional static node entropy measures work poorly. Further experimental examples in fMRI and ECG analysis show that these entropy measures are able to characterizing different rhythmic states of subjects, showing high potential for time series analysis from complex systems.

Suggested Citation

  • Wang, Xiaoyan & Han, Xiujing & Chen, Zhangyao & Bi, Qinsheng & Guan, Shuguang & Zou, Yong, 2022. "Multi-scale transition network approaches for nonlinear time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922002363
    DOI: 10.1016/j.chaos.2022.112026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andriana S L O Campanharo & M Irmak Sirer & R Dean Malmgren & Fernando M Ramos & Luís A Nunes Amaral, 2011. "Duality between Time Series and Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenjie & Ji, Jinchen & Huang, Lihong & Zhang, Ying, 2023. "Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Wang, Xiaoyan & Tang, Ming & Guan, Shuguang & Zou, Yong, 2023. "Quantifying time series complexity by multi-scale transition network approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    4. Yan, Shuang & Gu, Changgui & Yang, Huijie, 2024. "Bridge successive states for a complex system with evolutionary matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    5. Chen, Yu & Ling, Guang & Song, Xiangxiang & Tu, Wenhui, 2023. "Characterizing the statistical complexity of nonlinear time series via ordinal pattern transition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. Ahmadi, Negar & Pei, Yulong & Pechenizkiy, Mykola, 2019. "Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 289-308.
    4. Pierini, Jorge O. & Lovallo, Michele & Telesca, Luciano, 2012. "Visibility graph analysis of wind speed records measured in central Argentina," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5041-5048.
    5. Bokyong Shin & Mikko Rask, 2021. "Assessment of Online Deliberative Quality: New Indicators Using Network Analysis and Time-Series Analysis," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    6. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Flores-Marquez, Leticia, 2013. "Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6571-6577.
    7. Ren, Weikai & Jin, Zhijun, 2023. "Phase space visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Luciano Telesca & Michele Lovallo & Alejandro Ramirez-Rojas & Leticia Flores-Marquez, 2014. "Relationship between the Frequency Magnitude Distribution and the Visibility Graph in the Synthetic Seismicity Generated by a Simple Stick-Slip System with Asperities," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-7, August.
    9. Baggio, Rodolfo, 2015. "Looking into the future of complex dynamic systems," MPRA Paper 65549, University Library of Munich, Germany.
    10. Serinaldi, Francesco & Kilsby, Chris G., 2016. "Irreversibility and complex network behavior of stream flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 585-600.
    11. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    12. Jamshid Ardalankia & Jafar Askari & Somaye Sheykhali & Emmanuel Haven & G. Reza Jafari, 2020. "Mapping Coupled Time-series Onto Complex Network," Papers 2004.13536, arXiv.org, revised Aug 2020.
    13. Baggio, Rodolfo & Sainaghi, Ruggero, 2016. "Mapping time series into networks as a tool to assess the complex dynamics of tourism systems," Tourism Management, Elsevier, vol. 54(C), pages 23-33.
    14. Mario L'opez P'erez & Ricardo Mansilla, 2021. "Ordinal Synchronization and Typical States in High-Frequency Digital Markets," Papers 2110.07047, arXiv.org, revised Mar 2022.
    15. Charley Presigny & Marie-Constance Corsi & Fabrizio De Vico Fallani, 2024. "Node-layer duality in networked systems," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Campanharo, Andriana S.L.O. & Ramos, Fernando M., 2016. "Hurst exponent estimation of self-affine time series using quantile graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 43-48.
    17. Carlo Mari & Cristiano Baldassari, 2023. "Optimization of mixture models on time series networks encoded by visibility graphs: an analysis of the US electricity market," Computational Management Science, Springer, vol. 20(1), pages 1-23, December.
    18. Telesca, Luciano & Lovallo, Michele & Toth, Laszlo, 2014. "Visibility graph analysis of 2002–2011 Pannonian seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 219-224.
    19. Martín Gómez Ravetti & Laura C Carpi & Bruna Amin Gonçalves & Alejandro C Frery & Osvaldo A Rosso, 2014. "Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    20. Wang, Xiaoyan & Tang, Ming & Guan, Shuguang & Zou, Yong, 2023. "Quantifying time series complexity by multi-scale transition network approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922002363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.