IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v618y2023ics0378437123002509.html
   My bibliography  Save this article

Eliminating the biases of user influence and item popularity in bipartite networks: A case study of Flickr and Netflix

Author

Listed:
  • Jung, Hohyun

Abstract

User–item bipartite networks consist of users and items, where edges indicate the interactions of user–item pairs. We propose a Bayesian generative model for the user–item bipartite network that can measure the two types of rich-get-richer biases: item popularity and user influence biases. Furthermore, the model contains a novel measure of an item, namely the item quality that can be used in the item recommender system. The item quality represents the genuine worth of an item when the biases are removed. The Gibbs sampling algorithm alongside the adaptive rejection sampling is presented to obtain the posterior samples to perform the inference on the parameters. Monte Carlo simulations are performed to validate the presented algorithm. We apply the proposed model to Flickr user-tag and Netflix user–movie networks to yield remarkable interpretations of the rich-get-richer biases. We further discuss genuine item quality using Flickr tags and Netflix movies, considering the importance of bias elimination.

Suggested Citation

  • Jung, Hohyun, 2023. "Eliminating the biases of user influence and item popularity in bipartite networks: A case study of Flickr and Netflix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
  • Handle: RePEc:eee:phsmap:v:618:y:2023:i:c:s0378437123002509
    DOI: 10.1016/j.physa.2023.128695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002509
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Hohyun & Phoa, Frederick Kin Hing, 2021. "On the effects of capability and popularity on network dynamics with applications to YouTube and Twitch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Osnat Mokryn & Allon Wagner & Marcel Blattner & Eytan Ruppin & Yuval Shavitt, 2016. "The Role of Temporal Trends in Growing Networks," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    3. Mazzarisi, P. & Barucca, P. & Lillo, F. & Tantari, D., 2020. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," European Journal of Operational Research, Elsevier, vol. 281(1), pages 50-65.
    4. Peter Klimek & Aleksandar Jovanovic & Rainer Egloff & Reto Schneider, 2016. "Successful fish go with the flow: citation impact prediction based on centrality measures for term–document networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1265-1282, June.
    5. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    6. Durham, Yvonne & Hirshleifer, Jack & Smith, Vernon L, 1998. "Do the Rich Get Richer and the Poor Poorer? Experimental Tests of a Model of Power," American Economic Review, American Economic Association, vol. 88(4), pages 970-983, September.
    7. Ren, Zhuo-Ming & Shi, Yu-Qiang & Liao, Hao, 2016. "Characterizing popularity dynamics of online videos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 236-241.
    8. Livia Lin-Hsuan Chang & Frederick Kin Hing Phoa & Junji Nakano, 2021. "A generative model of article citation networks of a subject from a large-scale citation database," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7373-7395, September.
    9. D'aniel Kondor & M'arton P'osfai & Istv'an Csabai & G'abor Vattay, 2013. "Do the rich get richer? An empirical analysis of the BitCoin transaction network," Papers 1308.3892, arXiv.org, revised Mar 2014.
    10. Page Jr., Frank H. & Wooders, Myrna, 2010. "Club networks with multiple memberships and noncooperative stability," Games and Economic Behavior, Elsevier, vol. 70(1), pages 12-20, September.
    11. Dániel Kondor & Márton Pósfai & István Csabai & Gábor Vattay, 2014. "Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    12. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Lei & Huang, Yichen, 2024. "Optimizing the connectedness of recommendation networks for retrieval accuracy and visiting diversity of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Hohyun & Phoa, Frederick Kin Hing, 2021. "On the effects of capability and popularity on network dynamics with applications to YouTube and Twitch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Ayana T Aspembitova & Ling Feng & Lock Yue Chew, 2021. "Behavioral structure of users in cryptocurrency market," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-19, January.
    3. Alexandre Bovet & Carlo Campajola & Jorge F. Lazo & Francesco Mottes & Iacopo Pozzana & Valerio Restocchi & Pietro Saggese & Nicol'o Vallarano & Tiziano Squartini & Claudio J. Tessone, 2018. "Network-based indicators of Bitcoin bubbles," Papers 1805.04460, arXiv.org.
    4. Carlo Campajola & Marco D'Errico & Claudio J. Tessone, 2022. "MicroVelocity: rethinking the Velocity of Money for digital currencies," Papers 2201.13416, arXiv.org, revised May 2023.
    5. Ke Wu & Spencer Wheatley & Didier Sornette, 2018. "Classification of cryptocurrency coins and tokens by the dynamics of their market capitalisations," Papers 1803.03088, arXiv.org, revised May 2018.
    6. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    7. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    8. Nick James & Kevin Chin, 2021. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Papers 2111.11022, arXiv.org, revised Jan 2022.
    9. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
    10. Espinoza-Licona, David R. & Pérez-Sosa, Felipe A., 2019. "El bitcoin, ¿una burbuja especulativa? Análisis de la estabilidad paramétrica de series de tiempo para el periodo 2009-2018," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 14(51), pages 45-60, Segundo s.
    11. Massimiliano Zanin & David Papo & Miguel Romance & Regino Criado & Santiago Moral, 2016. "The topology of card transaction money flows," Papers 1605.04938, arXiv.org.
    12. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    13. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    14. Young Bin Kim & Sang Hyeok Lee & Shin Jin Kang & Myung Jin Choi & Jung Lee & Chang Hun Kim, 2015. "Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    15. Yu Zhang & Claudio Tessone, 2024. "Bitcoin Transaction Behavior Modeling Based on Balance Data," Papers 2409.10407, arXiv.org.
    16. Chengyi Tu & Paolo DOdorico & Samir Suweis, 2018. "Critical slowing down associated with critical transition and risk of collapse in cryptocurrency," Papers 1806.08386, arXiv.org, revised Nov 2019.
    17. Matthias Nadler & Fabian Schar, 2020. "Decentralized Finance, Centralized Ownership? An Iterative Mapping Process to Measure Protocol Token Distribution," Papers 2012.09306, arXiv.org.
    18. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    19. Yoshi Fujiwara & Rubaiyat Islam, 2021. "Bitcoin's Crypto Flow Network," Papers 2106.11446, arXiv.org, revised Jul 2021.
    20. Sha Wang & Jean-Philippe Vergne, 2017. "Buzz Factor or Innovation Potential: What Explains Cryptocurrencies’ Returns?," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:618:y:2023:i:c:s0378437123002509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.