IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922005057.html
   My bibliography  Save this article

Effective instability quantification for multivariate complex time series using reverse Shannon-Fisher index

Author

Listed:
  • Shang, Binbin
  • Shang, Pengjian

Abstract

In this paper, we propose a reverse form of Shannon-Fisher (SF) index. The new method is based on the original SF index, which is capable of quantifying the instability of time series. The core of this method mainly includes two points. Firstly, considering that the visibility graph (VG) is only suitable for univariate time series, we replace it with the vector visibility graph (VVG) applicable for multivariate time series. Secondly, in order to provide a new perspective to explore the information contained in time series, we change the original distribution applied in the SF index to the negation of this original distribution. Compared with the original SF index, our new method can not only obtain the information contained in simulated time series from a complementary point of view, but also improve the limitation of data length in the original SF index. In the process of experimenting with the stock data, it can be realized that our method is able to identify those special years of different regions, which suggests that it is provided with the possibility of becoming a new effective method for instability quantification of multivariate time series.

Suggested Citation

  • Shang, Binbin & Shang, Pengjian, 2022. "Effective instability quantification for multivariate complex time series using reverse Shannon-Fisher index," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922005057
    DOI: 10.1016/j.chaos.2022.112295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonçalves, Bruna Amin & Carpi, Laura & Rosso, Osvaldo A. & Ravetti, Martín G. & Atman, A.P.F., 2019. "Quantifying instabilities in Financial Markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 606-615.
    2. Ding, Shun-Liang & Song, En-Zhe & Yang, Li-Ping & Litak, Grzegorz & Yao, Chong & Ma, Xiu-Zhen, 2016. "Investigation on nonlinear dynamic characteristics of combustion instability in the lean-burn premixed natural gas engine," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 99-110.
    3. Yang, Yue & Yang, Huijie, 2008. "Complex network-based time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1381-1386.
    4. Lirong Wang & Chiayang James Hueng, 2019. "Domestic financial instability and foreign reserves accumulation in China," International Finance, Wiley Blackwell, vol. 22(2), pages 124-137, August.
    5. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xiaohua & Niu, Min, 2023. "Horizontal visibility graphs mapped from multifractal trinomial measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    3. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    4. Peng, Xiaoyi & Zhao, Yi & Small, Michael, 2020. "Identification and prediction of bifurcation tipping points using complex networks based on quasi-isometric mapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Wang, Lirong & Zhou, Jinnan & Hueng, C. James, 2022. "Dynamics of gross capital flows and financial stress in China," Finance Research Letters, Elsevier, vol. 44(C).
    8. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2015. "The study of RMB exchange rate complex networks based on fluctuation mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 359-376.
    9. Bai, Shiwei & Niu, Min & Wang, Yu, 2024. "The network structure of Sturmian sequences based on HVG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    10. Ömer Akgüller & Mehmet Ali Balcı & Larissa M. Batrancea & Lucian Gaban, 2023. "Path-Based Visibility Graph Kernel and Application for the Borsa Istanbul Stock Network," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    11. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    12. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    13. Shengyang Gao & Fashe Li & Qingtai Xiao & Jianxin Xu & Huage Wang & Hua Wang, 2019. "Experimental Demonstration of Deterministic Chaos in a Waste Oil Biodiesel Semi-Industrial Furnace Combustion System," Energies, MDPI, vol. 12(23), pages 1-17, November.
    14. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    15. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    16. Douglas Castilho & Tharsis T. P. Souza & Soong Moon Kang & Jo~ao Gama & Andr'e C. P. L. F. de Carvalho, 2021. "Forecasting Financial Market Structure from Network Features using Machine Learning," Papers 2110.11751, arXiv.org.
    17. Li, Sange & Shang, Pengjian, 2021. "Analysis of nonlinear time series using discrete generalized past entropy based on amplitude difference distribution of horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    19. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    20. Cao, Run-Hua & Deng, Zheng-Hong & Xu, Ji-Wei, 2022. "Analysis of precipitation characteristics in Shanghai based on the visibility graph algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922005057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.