IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip1s0378437122008019.html
   My bibliography  Save this article

A general dynamic sequential learning framework for vehicle trajectory reconstruction using automatic vehicle location or identification data

Author

Listed:
  • Wang, Yinpu
  • An, Chengchuan
  • Ou, Jishun
  • Lu, Zhenbo
  • Xia, Jingxin

Abstract

Vehicle trajectory data derived from automatic vehicle location (AVL) and automatic vehicle identification (AVI) systems provide critical support for intelligent transportation systems. However, the field-obtained vehicle trajectories are usually incomplete due to sensor malfunction or communication issues. To recover the incomplete data, the existing reconstruction methods have to impose strong assumptions on driver route choice behaviors (network level) and/or traffic dynamics (link level). With the tremendous data available, leveraging data-driven approaches to address the vehicle trajectory reconstruction problem with minimal assumptions is promising. This paper proposes a general dynamic sequential learning framework to reconstruct vehicle trajectory points for both AVL and AVI data. First, an Isolation Forest based ensemble learning model is developed to extract trajectory sequences attributed to different trips in an entire trip chain of a vehicle. Second, the dynamic recurrent neural network (dynamic RNN) is tailored to learn the underlying patterns from the complete AVL and AVI trajectories, respectively. Third, a sequential prediction scheme is customized to reconstruct AVL and AVI trajectories based on the trained networks. To validate the proposed method, two experiments are conducted. One is a simulation experiment with AVL data gathered from a well-calibrated simulation model. The other is a field experiment with AVI data collected from a real-world automatic license plate recognition (ALPR) system. The results show that the proposed method achieves superior performance for both AVL and AVI data compared with the traditional methods. The impacts of different sampling rates and traffic conditions on the model performance are also discussed.

Suggested Citation

  • Wang, Yinpu & An, Chengchuan & Ou, Jishun & Lu, Zhenbo & Xia, Jingxin, 2022. "A general dynamic sequential learning framework for vehicle trajectory reconstruction using automatic vehicle location or identification data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008019
    DOI: 10.1016/j.physa.2022.128243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008019
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jiansen & Lu, Jinquan & Chen, Xinqiang & Yan, Zhongwei & Yan, Ying & Sun, Yang, 2022. "High-fidelity data supported ship trajectory prediction via an ensemble machine learning framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Haiyang Yu & Shuai Yang & Zhihai Wu & Xiaolei Ma, 2018. "Vehicle trajectory reconstruction from automatic license plate reader data," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    3. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    4. Zheng, Liang & Yang, Youpeng & Xue, Xinfeng & Li, Xiaoru & Xu, Chengcheng, 2021. "Towards network-wide safe and efficient traffic signal timing optimization based on costly stochastic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    5. Zhang, Kunpeng & Feng, Xiaoliang & Jia, Ning & Zhao, Liang & He, Zhengbing, 2022. "TSR-GAN: Generative Adversarial Networks for Traffic State Reconstruction with Time Space Diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. Meisam Akbarzadeh & Ernesto Estrada, 2018. "Communicability geometry captures traffic flows in cities," Nature Human Behaviour, Nature, vol. 2(9), pages 645-652, September.
    7. Chen, Kai & Song, Xiao & Ren, Xiaoxiang, 2021. "Modeling social interaction and intention for pedestrian trajectory prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Huitao & Zheng, Liang & Zhang, Kunpeng & Li, Changlin, 2022. "Joint prediction of zone-based and OD-based passenger demands with a novel generative adversarial network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Wenhao Li & Chengkun Liu & Tao Wang & Yanjie Ji, 2024. "An innovative supervised learning structure for trajectory reconstruction of sparse LPR data," Transportation, Springer, vol. 51(1), pages 73-97, February.
    3. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    4. Zhao, Jiansen & Yan, Zhongwei & Chen, Xinqiang & Han, Bing & Wu, Shubo & Ke, Ranxuan, 2022. "k-GCN-LSTM: A k-hop Graph Convolutional Network and Long–Short-Term Memory for ship speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Hu, Shou-Ren & Peeta, Srinivas & Chu, Chun-Hsiao, 2009. "Identification of vehicle sensor locations for link-based network traffic applications," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 873-894, September.
    6. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    7. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    8. Wang, Yukuan & Liu, Jingxian & Liu, Ryan Wen & Wu, Weihuang & Liu, Yang, 2023. "Interval prediction of vessel trajectory based on lower and upper bound estimation and attention-modified LSTM with bayesian optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    10. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    11. Zhang, Ke & Lin, Xi & Li, Meng, 2023. "Graph attention reinforcement learning with flexible matching policies for multi-depot vehicle routing problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    12. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    13. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    14. Mínguez, R. & Sánchez-Cambronero, S. & Castillo, E. & Jiménez, P., 2010. "Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 282-298, February.
    15. Ma, Jinlong & Wang, Peng & An, Zishuo, 2023. "The influence of layered community network structure on traffic capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    16. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    17. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    18. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    19. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    20. Siripirote, Treerapot & Sumalee, Agachai & Ho, H.W. & Lam, William H.K., 2015. "Statistical approach for activity-based model calibration based on plate scanning and traffic counts data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 280-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.