IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v600y2022ics0378437122003582.html
   My bibliography  Save this article

Choices of intercity multimodal passenger travel modes

Author

Listed:
  • Feng, Yingzi
  • Zhao, Jiandong
  • Sun, Huijun
  • Wu, Jianjun
  • Gao, Ziyou

Abstract

In recent years, transportation problems have evolved from city transportation problems to urban agglomeration problems. Thus, the development of Chinese transportation cannot neglect the role of Inter-City transportation being the infrastructural framework. Keep abreast of Inter-City passengers’ choice behaviors can support the operation of multi-transportation systems. First, to better address the large deviation between the impedance function and the travelers’ perceived cost, we construct the generalized cost function with seven terms, which are car time, waiting time, walking time, access/egress times, ticket price, transfer penalty and comfort level respectively, with reliability and security being taken into considerations. Second, pointing at the problem of low accuracy in calculating the sharing rate of various transportation modes under different traffic systems, we proposed a Two-Stage Path-Size Weibit (TS-PSW) model to calculate the sharing rate of multi-mode passenger flow between cities respectively. After that, we decomposed the TS-PSW model into two-layer Path-Size Weibit (PSW) model by the Two-Stage estimation method, and used the maximum likelihood estimation to solve PSW model respectively. Finally, using the intercity transportation networks (Chengdu–Chongqing, Guangzhou–Qingyuan, Beijing–Zhangjiakou) as background, compare six discrete choice models’ calculation results. Result shows that the passenger flow sharing rate curve calculated by TS-PSW Model is evidently the closest to the actual transportation modes, the maximum error from Chengdu to Chongqing is 6.60%, the minimum is 3.80%, the maximum error from Beijing to Zhangjiakou is 10.20%, and the minimum is 3.30%. Results verify the effectiveness of the proposed generalized cost function and mode choice model. The upcoming Winter Olympics will be held during the Spring Festival, other events will not be arranged at the same time. Therefore, travel demand will increase significantly. Improving the mode choice model and verifying its effectiveness on multiple intercity networks, especially the Beijing–Zhangjiakou network, can provide theoretical support for mastering passenger travel mode selection during the future Winter Olympics and further improving transportation planning and related deployment.

Suggested Citation

  • Feng, Yingzi & Zhao, Jiandong & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2022. "Choices of intercity multimodal passenger travel modes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  • Handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003582
    DOI: 10.1016/j.physa.2022.127500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003582
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    2. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    3. Kitthamkesorn, Songyot & Chen, Anthony, 2013. "A path-size weibit stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 378-397.
    4. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    5. Yao, Jia & Chen, Anthony, 2014. "An analysis of logit and weibit route choices in stochastic assignment paradox," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 31-49.
    6. Cantillo, Víctor & Heydecker, Benjamin & de Dios Ortúzar, Juan, 2006. "A discrete choice model incorporating thresholds for perception in attribute values," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 807-825, November.
    7. Xu, Chengcheng & Wang, Yong & Liu, Pan & Wang, Wei & Bao, Jie, 2018. "Quantitative risk assessment of freeway crash casualty using high-resolution traffic data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 299-311.
    8. Román, Concepción & Espino, Raquel & Martín, Juan Carlos, 2007. "Competition of high-speed train with air transport: The case of Madrid–Barcelona," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 277-284.
    9. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    10. Park, Yonghwa & Ha, Hun-Koo, 2006. "Analysis of the impact of high-speed railroad service on air transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 95-104, March.
    11. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Hu & Lv, Sirui & Guo, Bao & Dai, Jianjun & Wang, Pu, 2024. "Uncovering spatiotemporal human mobility patterns in urban agglomerations: A mobility field based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Peiwen Zhang & Rui Ding & Wenke Zhao & Liaodong Zhang & Hong Sun, 2022. "Passenger Travel Path Selection Based on the Characteristic Value of Transport Services," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    2. Xu, Xiangdong & Chen, Anthony & Kitthamkesorn, Songyot & Yang, Hai & Lo, Hong K., 2015. "Modeling absolute and relative cost differences in stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 686-703.
    3. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    4. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    5. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    6. Nakayama, Shoichiro & Chikaraishi, Makoto, 2015. "Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 672-685.
    7. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    8. Kitthamkesorn, Songyot & Chen, Anthony, 2014. "Unconstrained weibit stochastic user equilibrium model with extensions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 1-21.
    9. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    10. Tan, Heqing & Xu, Xiangdong & Chen, Anthony, 2024. "On endogenously distinguishing inactive paths in stochastic user equilibrium: A convex programming approach with a truncated path choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    11. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    12. Tsunoda, Yushi, 2018. "Transportation policy for high-speed rail competing with airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 350-360.
    13. Roberto Sañudo & Eneko Echaniz & Borja Alonso & Rubén Cordera, 2019. "Addressing the Importance of Service Attributes in Railways," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    14. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    15. Songyot Kitthamkesorn & Anthony Chen & Sathaporn Opasanon & Suwicha Jaita, 2021. "A P-Hub Location Problem for Determining Park-and-Ride Facility Locations with the Weibit-Based Choice Model," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    16. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    17. Mattsson, Lars-Göran & Weibull, Jörgen W. & Lindberg, Per Olov, 2014. "Extreme values, invariance and choice probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 81-95.
    18. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    19. Hjorth, Katrine & Börjesson, Maria & Engelson, Leonid & Fosgerau, Mogens, 2015. "Estimating exponential scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 230-251.
    20. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.