IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437124000797.html
   My bibliography  Save this article

Uncovering spatiotemporal human mobility patterns in urban agglomerations: A mobility field based approach

Author

Listed:
  • Yang, Hu
  • Lv, Sirui
  • Guo, Bao
  • Dai, Jianjun
  • Wang, Pu

Abstract

There are still lacking effective approaches to comprehensively quantify the attractions of different regions to human mobility. Here, we employ the mobility field approach to analyze the spatiotemporal human mobility patterns in the Changsha-Zhuzhou-Xiangtan urban agglomeration. The potential of each region of the mobility field is estimated to quantify the attraction of each region to human mobility. In addition, the fuzzy c-means algorithm is used to cluster the regions in the urban agglomeration. We find that residents from diverse regions of the urban agglomeration are attracted to work in Changsha (the core city of the urban agglomeration), and they usually return to their hometowns during holidays. We also find that the urban agglomeration splits into four regions, one of which covers the Changsha downtown and a part of Zhuzhou and Xiangtan, indicating a certain level of integration of the three cities. Our findings could assist policy makers to understand spatiotemporal human mobility patterns in urban agglomerations and guide urban agglomeration transportation management.

Suggested Citation

  • Yang, Hu & Lv, Sirui & Guo, Bao & Dai, Jianjun & Wang, Pu, 2024. "Uncovering spatiotemporal human mobility patterns in urban agglomerations: A mobility field based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000797
    DOI: 10.1016/j.physa.2024.129571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000797
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Pappalardo & Filippo Simini & Salvatore Rinzivillo & Dino Pedreschi & Fosca Giannotti & Albert-László Barabási, 2015. "Returners and explorers dichotomy in human mobility," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    2. Binglei Xie & Yu Sun & Xiaolong Huang & Le Yu & Gangyan Xu, 2020. "Travel Characteristics Analysis and Passenger Flow Prediction of Intercity Shuttles in the Pearl River Delta on Holidays," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    3. Li, Xijing & Huang, Bo & Li, Rongrong & Zhang, Yipei, 2016. "Exploring the impact of high speed railways on the spatial redistribution of economic activities - Yangtze River Delta urban agglomeration as a case study," Journal of Transport Geography, Elsevier, vol. 57(C), pages 194-206.
    4. Yubo Zhao & Gui Zhang & Hongwei Zhao & Anirban Chakraborti, 2021. "Spatial Network Structures of Urban Agglomeration Based on the Improved Gravity Model: A Case Study in China’s Two Urban Agglomerations," Complexity, Hindawi, vol. 2021, pages 1-17, February.
    5. Feng, Yingzi & Zhao, Jiandong & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2022. "Choices of intercity multimodal passenger travel modes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Şule Akkoyunlu, 2012. "Intervening Opportunities and Competing Migrants in Turkish migration to Germany, 1969-2008," Migration Letters, Migration Letters, vol. 9(2), pages 155-175, May.
    7. Bao, Yue & Xiao, Feng & Gao, Zaihan & Gao, Ziyou, 2017. "Investigation of the traffic congestion during public holiday and the impact of the toll-exemption policy," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 58-81.
    8. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    9. Mattia Mazzoli & Alex Molas & Aleix Bassolas & Maxime Lenormand & Pere Colet & José J. Ramasco, 2019. "Field theory for recurrent mobility," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. Ren, Yi & Tian, Yuan & Xiao, Xue, 2022. "Spatial effects of transportation infrastructure on the development of urban agglomeration integration: Evidence from the Yangtze River Economic Belt," Journal of Transport Geography, Elsevier, vol. 104(C).
    11. David Karemera & Victor Iwuagwu Oguledo & Bobby Davis, 2000. "A gravity model analysis of international migration to North America," Applied Economics, Taylor & Francis Journals, vol. 32(13), pages 1745-1755.
    12. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    13. Laura Alessandretti & Ulf Aslak & Sune Lehmann, 2020. "The scales of human mobility," Nature, Nature, vol. 587(7834), pages 402-407, November.
    14. Jiwei Li & Qingqing Ye & Xuankai Deng & Yaolin Liu & Yanfang Liu, 2016. "Spatial-Temporal Analysis on Spring Festival Travel Rush in China Based on Multisource Big Data," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    15. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    16. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    2. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    4. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    5. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Rafael Prieto Curiel & Luca Pappalardo & Lorenzo Gabrielli & Steven Richard Bishop, 2018. "Gravity and scaling laws of city to city migration," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-19, July.
    7. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    8. Zhang, Xiaohu, 2021. "Beyond expected regularity of aggregate urban mobility: A case study of ridesourcing service," Journal of Transport Geography, Elsevier, vol. 95(C).
    9. Jungmin Kim & Juyong Park & Wonjae Lee, 2018. "Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-29, February.
    10. Chen, Ya & Li, Xue & Zhang, Richong & Huang, Zi-Gang & Lai, Ying-Cheng, 2020. "Instantaneous success and influence promotion in cyberspace — how do they occur?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Clodomir Santana & Federico Botta & Hugo Barbosa & Filippo Privitera & Ronaldo Menezes & Riccardo Di Clemente, 2023. "COVID-19 is linked to changes in the time–space dimension of human mobility," Nature Human Behaviour, Nature, vol. 7(10), pages 1729-1739, October.
    12. Mohammadi, Neda & Taylor, John E., 2017. "Urban infrastructure-mobility energy flux," Energy, Elsevier, vol. 140(P1), pages 716-728.
    13. Raja Jurdak, 2013. "The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    14. Daniel Austin & Robin M Cross & Tamara Hayes & Jeffrey Kaye, 2014. "Regularity and Predictability of Human Mobility in Personal Space," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    15. Fernando Santa & Roberto Henriques & Joaquín Torres-Sospedra & Edzer Pebesma, 2019. "A Statistical Approach for Studying the Spatio-Temporal Distribution of Geolocated Tweets in Urban Environments," Sustainability, MDPI, vol. 11(3), pages 1-29, January.
    16. Huang, Jinyu & Chen, Chao, 2022. "Metapopulation epidemic models with a universal mobility pattern on interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    17. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    18. Filippo Simini & Gianni Barlacchi & Massimilano Luca & Luca Pappalardo, 2021. "A Deep Gravity model for mobility flows generation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    19. Pengjun Zhao & Hao Wang & Qiyang Liu & Xiao-Yong Yan & Jingzhong Li, 2024. "Unravelling the spatial directionality of urban mobility," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Nimrod Serok & Efrat Blumenfeld-Lieberthal, 2015. "A Simulation Model for Intra-Urban Movements," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.