IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v597y2022ics0378437122002382.html
   My bibliography  Save this article

Agent-based modelling of sports riots

Author

Listed:
  • Clements, Alastair J.
  • Fadai, Nabil T.

Abstract

Riots originating during, or in the aftermath of, sports events can incur significant costs in damages, as well as large-scale panic and injuries. A mathematical description of sports riots is therefore sought to better understand their propagation and limit these physical and financial damages. In this work, we present an agent-based modelling (ABM) framework that describes the qualitative features of populations engaging in riotous behaviour. Agents, pertaining to either a ‘rioter’ or a ‘bystander’ sub-population, move on an underlying lattice and can either be recruited or defect from their respective sub-population. In particular, we allow these individual-level recruitment and defection processes to vary with local population density. This agent-based modelling framework provides the unifying link between multi-population stochastic models and density-dependent reaction processes. Furthermore, the continuum description of this ABM framework is shown to be a system of nonlinear reaction–diffusion equations and faithfully agrees with the average ABM behaviour from individual simulations. Finally, we determine the unique correspondence between the underlying individual-level recruitment and defection mechanisms with their population-level counterparts, providing a link between local-scale effects and macroscale rioting phenomena.

Suggested Citation

  • Clements, Alastair J. & Fadai, Nabil T., 2022. "Agent-based modelling of sports riots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
  • Handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002382
    DOI: 10.1016/j.physa.2022.127279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002382
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Abdulaziz Alsenafi & Alethea B. T. Barbaro, 2021. "A Multispecies Cross-Diffusion Model for Territorial Development," Mathematics, MDPI, vol. 9(12), pages 1-39, June.
    3. Simpson, Matthew J. & Landman, Kerry A. & Hughes, Barry D., 2010. "Cell invasion with proliferation mechanisms motivated by time-lapse data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3779-3790.
    4. Billore, Soniya & Anisimova, Tatiana, 2021. "Panic buying research: A systematic literature review and future research agenda," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue Early Vie.
    5. Stephanie Alice Baker, 2011. "The Mediated Crowd: New Social Media and New Forms of Rioting," Sociological Research Online, , vol. 16(4), pages 195-204, December.
    6. Simpson, Matthew J. & Landman, Kerry A. & Hughes, Barry D., 2009. "Multi-species simple exclusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 399-406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baker, Ruth E. & Simpson, Matthew J., 2012. "Models of collective cell motion for cell populations with different aspect ratio: Diffusion, proliferation and travelling waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3729-3750.
    2. Irons, Carolyn & Plank, Michael J. & Simpson, Matthew J., 2016. "Lattice-free models of directed cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 110-121.
    3. Matthew J Simpson & Parvathi Haridas & D L Sean McElwain, 2014. "Do Pioneer Cells Exist?," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    4. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    6. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    7. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    8. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    9. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    10. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    11. Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.
    12. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    13. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    14. Bhukya, Ramulu & Paul, Justin, 2023. "Social influence research in consumer behavior: What we learned and what we need to learn? – A hybrid systematic literature review," Journal of Business Research, Elsevier, vol. 162(C).
    15. Sungryong Bae & Jun-Ho Choi & Hong Sun Ryou, 2020. "Modification of Interaction Forces between Smoke and Evacuees," Energies, MDPI, vol. 13(16), pages 1-10, August.
    16. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    17. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    18. Ofer Tchernichovski & Marissa King & Peter Brinkmann & Xanadu Halkias & Daniel Fimiarz & Laurent Mars & Dalton Conley, 2017. "Tradeoff Between Distributed Social Learning and Herding Effect in Online Rating Systems," SAGE Open, , vol. 7(1), pages 21582440176, February.
    19. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    20. Natalie Fridman & Gal A. Kaminka, 2010. "Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory," Computational and Mathematical Organization Theory, Springer, vol. 16(4), pages 348-372, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.