IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i18p3779-3790.html
   My bibliography  Save this article

Cell invasion with proliferation mechanisms motivated by time-lapse data

Author

Listed:
  • Simpson, Matthew J.
  • Landman, Kerry A.
  • Hughes, Barry D.

Abstract

Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest-neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction–diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum–discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.

Suggested Citation

  • Simpson, Matthew J. & Landman, Kerry A. & Hughes, Barry D., 2010. "Cell invasion with proliferation mechanisms motivated by time-lapse data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3779-3790.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3779-3790
    DOI: 10.1016/j.physa.2010.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110004127
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Jin & Catherine J Penington & Scott W McCue & Matthew J Simpson, 2017. "A computational modelling framework to quantify the effects of passaging cell lines," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-16, July.
    2. Clements, Alastair J. & Fadai, Nabil T., 2022. "Agent-based modelling of sports riots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Irons, Carolyn & Plank, Michael J. & Simpson, Matthew J., 2016. "Lattice-free models of directed cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 110-121.
    4. Brenda N Vo & Christopher C Drovandi & Anthony N Pettitt & Graeme J Pettet, 2015. "Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    5. Baker, Ruth E. & Simpson, Matthew J., 2012. "Models of collective cell motion for cell populations with different aspect ratio: Diffusion, proliferation and travelling waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3729-3750.
    6. Katrina K Treloar & Matthew J Simpson, 2013. "Sensitivity of Edge Detection Methods for Quantifying Cell Migration Assays," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    7. Matthew J Simpson & Parvathi Haridas & D L Sean McElwain, 2014. "Do Pioneer Cells Exist?," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3779-3790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.