IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v645y2024ics0378437124003066.html
   My bibliography  Save this article

Experimental study on individual and crowd movement features around obstacles with different shape and size

Author

Listed:
  • Chen, Juan
  • Luo, Qian
  • Wang, Qiao
  • Lo, Jacqueline T.Y.
  • Ma, Jian

Abstract

Well-structured pedestrian experiments in a long corridor have been carried out to explore the influence of obstacle shape and size on individual and crowd level pedestrian movement characteristics. Results indicate that for individual pedestrians, the number of right-turning pedestrians and the target drift angle show clear changes with the increase of the obstacle size, while the speed only changes significantly when the obstacle size is greater than 1.5 m. For the crowd movement scenarios, a small obstacle can speed up the pedestrian flow, then, with the increase of the obstacle size, the movement time increases. The increase rate has a relation with the obstacle shape. The obstacle shape influence becomes more obvious when the individual and crowd movement scenarios are compared. The results of this paper are expected to provide practical basis for modeling pedestrian under the influence of obstacle.

Suggested Citation

  • Chen, Juan & Luo, Qian & Wang, Qiao & Lo, Jacqueline T.Y. & Ma, Jian, 2024. "Experimental study on individual and crowd movement features around obstacles with different shape and size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
  • Handle: RePEc:eee:phsmap:v:645:y:2024:i:c:s0378437124003066
    DOI: 10.1016/j.physa.2024.129797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124003066
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Xiaolu & Feliciani, Claudio & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2019. "Experimental study on the evading behavior of individual pedestrians when confronting with an obstacle in a corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    2. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    3. Chen, Siyuan & Fu, Libi & Fang, Jie & Yang, Panyun, 2019. "The effect of obstacle layouts on pedestrian flow in corridors: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    5. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    6. Fu, Zhijian & Li, Tao & Deng, Qiangqiang & Schadschneider, Andreas & Luo, Lin & Ma, Jian, 2021. "Effect of turning curvature on the single-file dynamics of pedestrian flow: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    8. Frank, G.A. & Dorso, C.O., 2011. "Room evacuation in the presence of an obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2135-2145.
    9. Li Jiang & Jingyu Li & Chao Shen & Sicong Yang & Zhangang Han, 2014. "Obstacle Optimization for Panic Flow - Reducing the Tangential Momentum Increases the Escape Speed," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-15, December.
    10. Shiwakoti, Nirajan & Sarvi, Majid & Rose, Geoff & Burd, Martin, 2011. "Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1433-1449.
    11. Li, Qiaoru & Gao, Yuechao & Chen, Liang & Kang, Zengxin, 2019. "Emergency evacuation with incomplete information in the presence of obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    12. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    3. Cheng, Zhiyang & Yue, Hao & Zhang, Ning & Zhang, Xu, 2024. "Research on mechanism and simulation for avoiding behavior of individual pedestrian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    4. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Hu, Yanghui & Bi, Yubo & Ren, Xiangxia & Huang, Shenshi & Gao, Wei, 2023. "Experimental study on the impact of a stationary pedestrian obstacle at the exit on evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    7. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    10. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    11. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Shabna SayedMohammed & Anshi Verma & Charitha Dias & Wael Alhajyaseen & Abdulkarim Almukdad & Kayvan Aghabayk, 2022. "Crowd Evacuation through Crossing Configurations: Effect of Crossing Angles and Walking Speeds on Speed Variation and Evacuation Time," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    13. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Fan, Minghao & Song, Weiguo, 2022. "The effect of obstacle layouts on regulating luggage-laden pedestrian flow through bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    14. Lin, Peng & Ma, Jian & Liu, Tian Yang & Ran, Tong & Si, You Liang & Wu, Fan Yu & Wang, Guo Yuan, 2017. "An experimental study of the impact of an obstacle on the escape efficiency by using mice under high competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 228-242.
    15. Lin, Peng & Ma, Jian & Liu, Tianyang & Ran, Tong & Si, Youliang & Li, Tao, 2016. "An experimental study of the “faster-is-slower” effect using mice under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 157-166.
    16. Kefan Xie & Benbu Liang & Yu Song & Xueqin Dong, 2019. "Analysis of Walking-Edge Effect in Train Station Evacuation Scenarios: A Sustainable Transportation Perspective," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    17. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    18. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    19. Ma, Wanjing & Li, Li & Wang, Yinhai, 2016. "A driving force model for non-strict priority crossing behaviors of right-turn driversAuthor-Name: Lin, Dianchao," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 230-244.
    20. Sticco, I.M. & Frank, G.A. & Cerrotta, S. & Dorso, C.O., 2017. "Room evacuation through two contiguous exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 172-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:645:y:2024:i:c:s0378437124003066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.