IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v580y2021ics0378437121004064.html
   My bibliography  Save this article

A cross-city exploratory analysis of the robustness of bus transit networks using open-source data

Author

Listed:
  • Jia, Tao
  • Liu, Wenxuan
  • Liu, Xintao

Abstract

A robust bus transit network is of fundamental importance for sustainable development by alleviating urban problems. This paper aims to explore the robustness of 57 bus transit networks from the aspect of transferability. Bus transit networks are constructed using open-source data from the same data source for ensuring a consistent comparison, and the network robustness is analyzed using giant component (GC) to represent the maximum scale of transferability and network efficiency (NE) that characterizes the overall efficiency of transferability. (1) The results reveal a universal heavy-tailed distribution of network betweenness irrespective of cities and indicate target attack is more destructive to network robustness than random attack. (2) Different cities have different degrees of robustness, where most large cities tend to be more vulnerable than small cities and NE is more likely to be affected by target attack than GC. (3) The impact of target attack may become weaker than random attack after removing a certain percentage of nodes, which varies in different cities. (4) Thereafter, we present clusters of cities according to similarities of their network robustness. Thus, our comparative results can benefit transit planners and policymakers by enhancing the robustness of bus transit networks.

Suggested Citation

  • Jia, Tao & Liu, Wenxuan & Liu, Xintao, 2021. "A cross-city exploratory analysis of the robustness of bus transit networks using open-source data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
  • Handle: RePEc:eee:phsmap:v:580:y:2021:i:c:s0378437121004064
    DOI: 10.1016/j.physa.2021.126133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004064
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Tao & Qin, Kun & Shan, Jie, 2014. "An exploratory analysis on the evolution of the US airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 266-279.
    2. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    3. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    4. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. Wu, Xingtang & Dong, Hairong & Tse, Chi Kong & Ho, Ivan W.H. & Lau, Francis C.M., 2018. "Analysis of metro network performance from a complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 553-563.
    7. Linda Too & George Earl, 2010. "Public transport service quality and sustainable development: a community stakeholder perspective," Sustainable Development, John Wiley & Sons, Ltd., vol. 18(1), pages 51-61.
    8. Sun, Lishan & Huang, Yuchen & Chen, Yanyan & Yao, Liya, 2018. "Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 12-24.
    9. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    10. Frappier, Alexis & Morency, Catherine & Trépanier, Martin, 2018. "Measuring the quality and diversity of transit alternatives," Transport Policy, Elsevier, vol. 61(C), pages 51-59.
    11. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    12. Sheng Wei & Lei Wang & Xiongwu Fu & Tao Jia, 2020. "Using Open Big Data to Build and Analyze Urban Bus Network Models within and across Administrations," Complexity, Hindawi, vol. 2020, pages 1-13, July.
    13. Xu, Xinping & Hu, Junhui & Liu, Feng & Liu, Lianshou, 2007. "Scaling and correlations in three bus-transport networks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 441-448.
    14. Hossain, Md. Murad & Alam, Sameer, 2017. "A complex network approach towards modeling and analysis of the Australian Airport Network," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 1-9.
    15. Wei, Ran & Liu, Xiaoyue & Mu, Yongjian & Wang, Liming & Golub, Aaron & Farber, Steven, 2017. "Evaluating public transit services for operational efficiency and access equity," Journal of Transport Geography, Elsevier, vol. 65(C), pages 70-79.
    16. Kostas P. Bithas & M. Christofakis, 2006. "Environmentally sustainable cities. Critical review and operational conditions," Sustainable Development, John Wiley & Sons, Ltd., vol. 14(3), pages 177-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hatem Abdelaty & Ahmed Foda & Moataz Mohamed, 2023. "The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    2. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Qin, Shaoyang, 2022. "Exploring the robustness of public transportation system on augmented network: A case from Nanjing China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Wang, Ziqi & Pei, Yulong & Zhang, Jianhua & Dong, Chuntong & Liu, Jing & Zhou, Dongyue, 2024. "Vulnerability analysis of public transit systems from the perspective of the traffic situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    4. Abdelaty, Hatem & Mohamed, Moataz & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Temporal robustness assessment framework for city-scale bus transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    3. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    4. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    5. Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.
    6. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    7. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    8. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    10. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    11. Zhang, Jianhua & Wang, Shuliang & Zhang, Zhaojun & Zou, Kuansheng & Shu, Zhan, 2016. "Characteristics on hub networks of urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 502-507.
    12. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Comparison analysis on complex topological network models of urban rail transit: A case study of Shenzhen Metro in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    13. Wu, Di & Yu, Changqing & Zhao, Yannan & Guo, Jialun, 2024. "Changes in vulnerability of global container shipping networks before and after the COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 114(C).
    14. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    15. Peng, Peng & Poon, Jessie P.H. & Yang, Yu & Lu, Feng & Cheng, Shifen, 2019. "Global oil traffic network and diffusion of influence among ports using real time data," Energy, Elsevier, vol. 172(C), pages 333-342.
    16. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    17. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    18. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Abdelaty, Hatem & Mohamed, Moataz & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Temporal robustness assessment framework for city-scale bus transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    20. Zachary Neal, 2018. "Is the Urban World Small? The Evidence for Small World Structure in Urban Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 615-631, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:580:y:2021:i:c:s0378437121004064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.