IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v590y2022ics0378437121009493.html
   My bibliography  Save this article

An analysis of contact tracing protocol in an over-dispersed SEIQR Covid-like disease

Author

Listed:
  • Elías, L. Llamazares
  • Elías, S. Llamazares
  • del Rey, A. Martín

Abstract

The aim of this work is to study an over-dispersed SEIQR infectious disease and obtain optimal methods of contact tracing. A prototypical example of such a disease is that of the current SARS-CoV-2 pandemic. In consequence, this study is immediately applicable to the current health crisis. In this paper, we introduce both a discrete and continuous model for various modes of contact tracing. From the continuous model, we derive a basic reproductive number and study the stability of the equilibrium points. We also implement the continuous and discrete models numerically and further analyze the effectiveness of different types of contact tracing and their cost on society. Additionally, through these simulations, we also study the effect that various parameters of the disease have on its evolution.

Suggested Citation

  • Elías, L. Llamazares & Elías, S. Llamazares & del Rey, A. Martín, 2022. "An analysis of contact tracing protocol in an over-dispersed SEIQR Covid-like disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
  • Handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009493
    DOI: 10.1016/j.physa.2021.126754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009493
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    2. Liang Wang & Xavier Didelot & Jing Yang & Gary Wong & Yi Shi & Wenjun Liu & George F. Gao & Yuhai Bi, 2020. "Inference of person-to-person transmission of COVID-19 reveals hidden super-spreading events during the early outbreak phase," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. William J. Bradshaw & Ethan C. Alley & Jonathan H. Huggins & Alun L. Lloyd & Kevin M. Esvelt, 2021. "Bidirectional contact tracing could dramatically improve COVID-19 control," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Bo Liu & Daniel Lee & Amogh Prabhav Jalihal & William P. Hanage & Michael Springer, 2023. "Quantitatively assessing early detection strategies for mitigating COVID-19 and future pandemics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Damon J A Toth & Alexander B Beams & Lindsay T Keegan & Yue Zhang & Tom Greene & Brian Orleans & Nathan Seegert & Adam Looney & Stephen C Alder & Matthew H Samore, 2021. "High variability in transmission of SARS-CoV-2 within households and implications for control," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
    3. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    6. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    7. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    8. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    10. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    11. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    12. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    13. Jonas Dehning & Sebastian B. Mohr & Sebastian Contreras & Philipp Dönges & Emil N. Iftekhar & Oliver Schulz & Philip Bechtle & Viola Priesemann, 2023. "Impact of the Euro 2020 championship on the spread of COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Zengmiao Wang & Peng Yang & Ruixue Wang & Luca Ferretti & Lele Zhao & Shan Pei & Xiaoli Wang & Lei Jia & Daitao Zhang & Yonghong Liu & Ziyan Liu & Quanyi Wang & Christophe Fraser & Huaiyu Tian, 2024. "Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. T Alex Perkins & Thomas W Scott & Arnaud Le Menach & David L Smith, 2013. "Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-16, December.
    16. Aleksandar Radic & Michael Lück & Amr Al-Ansi & Bee-Lia Chua & Sabrina Seeler & António Raposo & Jinkyung Jenny Kim & Heesup Han, 2021. "To Dine, or Not to Dine on a Cruise Ship in the Time of the COVID-19 Pandemic: The Tripartite Approach towards an Understanding of Behavioral Intentions among Female Passengers," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    17. Nathan O. Hodas & Jacob Hunter & Stephen J. Young & Kristina Lerman, 2018. "Model of cognitive dynamics predicts performance on standardized tests," Journal of Computational Social Science, Springer, vol. 1(2), pages 295-312, September.
    18. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
    19. Anna C Peterson & Valerie J McKenzie, 2014. "Investigating Differences across Host Species and Scales to Explain the Distribution of the Amphibian Pathogen Batrachochytrium dendrobatidis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    20. Wang, Jia-Zeng & Peng, Wei-Hua, 2020. "Fluctuations for the outbreak prevalence of the SIR epidemics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.