IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2772-d880567.html
   My bibliography  Save this article

Quantitative Analysis of Anesthesia Recovery Time by Machine Learning Prediction Models

Author

Listed:
  • Shumin Yang

    (Department of Computer Science, Shantou University, Shantou 515041, China)

  • Huaying Li

    (Department of Computer Science, Shantou University, Shantou 515041, China)

  • Zhizhe Lin

    (Office of Emergency Management, Shantou Central Hospital, Shantou 515041, China)

  • Youyi Song

    (Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China)

  • Cheng Lin

    (Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou 515041, China)

  • Teng Zhou

    (Department of Computer Science, Shantou University, Shantou 515041, China
    Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
    Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515800, China)

Abstract

It is significant for anesthesiologists to have a precise grasp of the recovery time of the patient after anesthesia. Accurate prediction of anesthesia recovery time can support anesthesiologist decision-making during surgery to help reduce the risk of surgery in patients. However, effective models are not proposed to solve this problem for anesthesiologists. In this paper, we seek to find effective forecasting methods. First, we collect 1824 patient anesthesia data from the eye center and then performed data preprocessing. We extracted 85 variables to predict recovery time from anesthesia. Second, we extract anesthesia information between variables for prediction using machine learning methods, including Bayesian ridge, lightGBM, random forest, support vector regression, and extreme gradient boosting. We also design simple deep learning models as prediction models, including linear residual neural networks and jumping knowledge linear neural networks. Lastly, we perform a comparative experiment of the above methods on the dataset. The experiment demonstrates that the machine learning method performs better than the deep learning model mentioned above on a small number of samples. We find random forest and XGBoost are more efficient than other methods to extract information between variables on postoperative anesthesia recovery time.

Suggested Citation

  • Shumin Yang & Huaying Li & Zhizhe Lin & Youyi Song & Cheng Lin & Teng Zhou, 2022. "Quantitative Analysis of Anesthesia Recovery Time by Machine Learning Prediction Models," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2772-:d:880567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Weihong & Yu, Ding & Wu, Ziyu & Du, Xin & Zhou, Teng, 2019. "A hybrid ensemble learning framework for basketball outcomes prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Fang, Weiwei & Zhuo, Wenhao & Yan, Jingwen & Song, Youyi & Jiang, Dazhi & Zhou, Teng, 2022. "Attention meets long short-term memory: A deep learning network for traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    3. Song, Kai & Gao, Yiran & Shi, Jian, 2020. "Making real-time predictions for NBA basketball games by combining the historical data and bookmaker’s betting line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    4. Peng, Yeping & Khaled, Usama & Al-Rashed, Abdullah A.A.A. & Meer, Rashid & Goodarzi, Marjan & Sarafraz, M.M., 2020. "Potential application of Response Surface Methodology (RSM) for the prediction and optimization of thermal conductivity of aqueous CuO (II) nanofluid: A statistical approach and experimental validatio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Sumit Sarkar & Sooraj Kamath, 2023. "Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’," Annals of Operations Research, Springer, vol. 325(1), pages 245-260, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2772-:d:880567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.