Bus-Passenger-Flow Prediction Model Based on WPD, Attention Mechanism, and Bi-LSTM
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Leong, Waiyan & Goh, Karen & Hess, Stephane & Murphy, Paul, 2016. "Improving bus service reliability: The Singapore experience," Research in Transportation Economics, Elsevier, vol. 59(C), pages 40-49.
- Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
- Muhammad Ashraf Javid & Nazam Ali & Syed Arif Hussain Shah & Muhammad Abdullah, 2021. "Travelers’ Attitudes Toward Mobile Application–Based Public Transport Services in Lahore," SAGE Open, , vol. 11(1), pages 21582440209, January.
- Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
- Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
- Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
- Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
- Junyong Jang & Yongbin Cho & Juntae Park, 2024. "Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
- Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
- Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Khatereh Ghasvarian Jahromi & Davood Gharavian & Hamid Reza Mahdiani, 2023. "Wind power prediction based on wind speed forecast using hidden Markov model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 101-123, January.
- Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
- Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
- Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
- Godachevich, Javiera & Tirachini, Alejandro, 2021. "Does the measured performance of bus operators depend on the index chosen to assess reliability in contracts? An analysis of bus headway variability," Research in Transportation Economics, Elsevier, vol. 90(C).
- Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
- Xinhua Mao & Changwei Yuan & Jiahua Gan, 2019. "Incorporating Dynamic Traffic Distribution into Pavement Maintenance Optimization Model," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
- Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.
- Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
- Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
More about this item
Keywords
urban traffic; public transit; deep learning; decomposition; hybrid model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14889-:d:1260205. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.