IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v583y2021ics0378437121005963.html
   My bibliography  Save this article

Endogenous stochastic arbitrage bubbles and the Black–Scholes model

Author

Listed:
  • Contreras G., Mauricio

Abstract

This paper develops a model that incorporates the presence of stochastic arbitrage explicitly in the Black–Scholes equation. Here, the arbitrage is generated by a stochastic bubble, which generalizes the deterministic arbitrage model obtained in the literature (Contreras et al., 2010). It is considered to be a generic stochastic dynamic for the arbitrage bubble, and a generalized Black–Scholes equation is then derived. The resulting equation is similar to that of the stochastic volatility models, but there are no undetermined parameters as the market price of risk.

Suggested Citation

  • Contreras G., Mauricio, 2021. "Endogenous stochastic arbitrage bubbles and the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
  • Handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121005963
    DOI: 10.1016/j.physa.2021.126323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005963
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirill Ilinski, 1999. "How to account for virtual arbitrage in the standard derivative pricing," Papers cond-mat/9902047, arXiv.org.
    2. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    3. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Contreras, M. & Echeverría, J. & Peña, J.P. & Villena, M., 2020. "Resonance phenomena in option pricing with arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Kirill Ilinski & Alexander Stepanenko, 1999. "Derivative pricing with virtual arbitrage," Papers cond-mat/9902046, arXiv.org.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Fedotov, Sergei & Panayides, Stephanos, 2005. "Stochastic arbitrage return and its implication for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 207-217.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Contreras, Mauricio & Montalva, Rodrigo & Pellicer, Rely & Villena, Marcelo, 2010. "Dynamic option pricing with endogenous stochastic arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3552-3564.
    11. Panayides, Stephanos, 2006. "Arbitrage opportunities and their implications to derivative hedging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 289-296.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Contreras G. & Roberto Ortiz H, 2021. "Three little arbitrage theorems," Papers 2104.10187, arXiv.org.
    2. Mauricio Contreras G, 2020. "Endogenous Stochastic Arbitrage Bubbles and the Black--Scholes model," Papers 2009.09329, arXiv.org.
    3. Contreras, M. & Echeverría, J. & Peña, J.P. & Villena, M., 2020. "Resonance phenomena in option pricing with arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Mauricio Contreras & Rely Pellicer & Daniel Santiagos & Marcelo Villena, 2015. "Calibration and simulation of arbitrage effects in a non-equilibrium quantum Black-Scholes model by using semiclassical methods," Papers 1512.05377, arXiv.org.
    5. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    6. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    8. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    9. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    10. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    11. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    12. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Juliusz Jabłecki & Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk & Piotr Wójcik, 2014. "Options delta hedging with no options at all," Working Papers 2014-27, Faculty of Economic Sciences, University of Warsaw.
    15. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    16. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Carey, Alexander, 2006. "Path-conditional forward volatility," MPRA Paper 4964, University Library of Munich, Germany.
    18. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    19. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    20. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121005963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.