OLMNE+FT: Multiplex network embedding based on overlapping links
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2022.127116
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
- Nianwen Ning & Qiuyue Li & Kai Zhao & Bin Wu & Shenghua Liu, 2021. "Multiplex Network Embedding Model with High-Order Node Dependence," Complexity, Hindawi, vol. 2021, pages 1-18, March.
- Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
- Abdolhosseini-Qomi, Amir Mahdi & Yazdani, Naser & Asadpour, Masoud, 2020. "Overlapping communities and the prediction of missing links in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Yang, Xu-Hua & Xiong, Zhen & Ma, Fangnan & Chen, Xiaoze & Ruan, Zhongyuan & Jiang, Peng & Xu, Xinli, 2021. "Identifying influential spreaders in complex networks based on network embedding and node local centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
- Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
- Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
- Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
- Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
- Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
- Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
- Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.
- Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
- Zhe Li & Xinyu Huang, 2023. "Identifying Influential Spreaders Using Local Information," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
- Yan, Jiaye & Zhou, Jiaying & Wu, Zhaoyan, 2019. "Structure identification of unknown complex-variable dynamical networks with complex coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 256-265.
- Etienne Farvaque & Frédéric Gannon, 2018.
"Profiling giants: the networks and influence of Buchanan and Tullock,"
Public Choice, Springer, vol. 175(3), pages 277-302, June.
- Etienne Farvaque & Frédéric Gannon, 2020. "Profiling giants: The networks and influence of Buchanan and Tullock," Working Papers halshs-02474745, HAL.
- Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
- Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
- Xiao, Yunpeng & Zhang, Li & Li, Qian & Liu, Ling, 2019. "MM-SIS: Model for multiple information spreading in multiplex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 135-146.
- Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
- Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
- Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
More about this item
Keywords
Multiplex network; Network embedding; Graph representation learning; Random walk;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.